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Abstract

We develop normwise backward errors and condition numbers for the polynomial

eigenvalue problem. The standard way of dealing with this problem is to reformulate it

as a generalized eigenvalue problem (GEP). For the special case of the quadratic ei-

genvalue problem (QEP), we show that solving the QEP by applying the QZ algorithm

to a corresponding GEP can be backward unstable. The QEP can be reformulated as a

GEP in many ways. We investigate the sensitivity of a given eigenvalue to perturbations

in each of the GEP formulations and identify which formulations are to be preferred for

large and small eigenvalues, respectively. Ó 2000 Elsevier Science Inc. All rights

reserved.
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1. Introduction

We are concerned with backward error analysis and conditioning for the
nonlinear eigenvalue problem

P �k�x � 0; �1:1�
where P �k� is a matrix whose elements are polynomials in a scalar k. We write
P in the form
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P �k� � kmAm � kmÿ1Amÿ1 � � � � � A0;

where Al 2 Cn�n, l � 0 : m and we refer to P as a k-matrix. If x 6� 0 then k is an
eigenvalue and x the corresponding right eigenvector; y 6� 0 is a left eigenvector
if

y�P�k� � 0: �1:2�
The importance of backward errors for investigating the stability and

quality of numerical algorithms and condition numbers for characterizing the
sensitivity of solutions to problems is widely appreciated. The forward error,
condition number and backward error are related by the inequality (correct to
®rst order in the backward error)

forward error6 condition number� backward error: �1:3�
Perturbation and backward error theory is well developed for linear systems,
least squares problems, the standard eigenvalue problem and more recently the
generalized eigenvalue problem (GEP). Condition estimation algorithms are
now used in most of the major mathematical program libraries including
LAPACK, NAG and IMSL as well as much commercial scienti®c software.
However, practically oriented analysis of backward errors and condition
numbers of the polynomial eigenvalue problem for m P 2 has not been done.

Few direct numerical methods are available for solving the polynomial ei-
genvalue problem (PEP). When m is small, the common practice is to trans-
form the PEP (1.1) into a GEP

An � kBn �1:4�
of order mn, where A and B can be de®ned by

A �

0 I 0 � � � 0

0 0 I . .
. ..

.

..

. . .
.

0

I

ÿA0 ÿ A1 ÿ A2 � � � ÿ Amÿ1

0BBBBBBB@

1CCCCCCCA;

B �

I

I

. .
.

I

Am

0BBBBBB@

1CCCCCCA:

�1:5�

340 F. Tisseur / Linear Algebra and its Applications 309 (2000) 339±361



Then the QZ algorithm is used if all the eigenpairs are desired, or an
Arnoldi or nonsymmetric Lanczos-type method if only a few of them are
required.

This work has three main contributions. First, for the PEP, we give com-
putable expressions for backward errors and condition numbers of simple ei-
genvalues by extending the work in [6,11] concerning the GEP.

There are many ways to reformulate the PEP as a GEP. Our second
contribution is to study the stability of these transformations in the case
m � 2. We show that solving the QEP by applying the QZ algorithm to the
GEP can be backward unstable for the QEP. Finally, we investigate the
sensitivity of a given eigenvalue of the QEP to perturbations in some GEP
formulations. We show that there can be great variation in sensitivity and we
identify which formulations are preferred for the large and the small eigen-
values, respectively.

2. Backward error and condition numbers

2.1. Preliminaries

When Am is nonsingular, P �k� is said to be regular and has mn ®nite ei-
genvalues. When rank�Am� < n, P �k� may have in®nite eigenvalues. In this
paper, we make no assumption on P �k� for the backward error analysis but for
the de®nition and derivation of condition numbers we restrict our attention to
regular k-matrices whose eigenvalues are simple. For a good survey of k-ma-
trices we refer to Lancaster [16].

Throughout the paper, the matrices El; l � 0 : m are arbitrary and represent
tolerances against which the perturbations DAl to Al will be measured. For
notational convenience, we de®ne

DP�k� � kmDAm � krÿ1DAmÿ1 � � � � � DA0; �2:1�
and, for a complex k,

sign�k� �
�k=k; k 6� 0;

0; k � 0:

(

We use the 2-norm, de®ned by kxk2 � �x�x�1=2
, kAk2 � max kAxk2 : kxk2 � 1

� 	
.

2.2. Backward errors

A natural de®nition of the normwise backward error of an approximate
eigenpair �~x; ~k� of (1.1) is
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g�~x; ~k� :� minf� : �P�~k� � DP �~k��~x � 0; kDAlk26 �kElk2; l � 0 : mg:
�2:2�

Our ®rst result gives an explicit expression for g�~x; ~k� and makes precise the
intuitive feeling that if the residual r � P �~k�~x is small, then we have a ``good''
approximate eigenpair. It is a straightforward modi®cation of a result of Rigal
and Gaches on the normwise backward error for a linear system [20] and
a generalization of the backward errors given in [6, Lemma 2.1] and [11,
Theorem 2.1].

Theorem 1. The normwise backward error g�~x; ~k� is given by

g�~x; ~k� � krk2

~ak~xk2

; �2:3�

where r � P �~k�~x and ~a �Pm
l�0 j~kjlkElk2.

Proof. It is straightforward to show that the right-hand side of (2.3) is a lower
bound for g�~x; ~k�. This lower bound is attained for the perturbations

DAl � ÿ 1

~a
sign�~kl�kElk2r~x�=k~xk2

2; l � 0 : m: �

When all the Al are Hermitian, it is of interest to consider a backward er-
ror in which the perturbations DAl respect the Hermitian structure in the Al.
Therefore, we de®ne the backward error

gH �~x; ~k� :� minf� : P �~k�~x� DP �~k�~x � 0;

DAl � DA�l ; kDAlk26 �kElk2; l � 0 : mg: �2:4�
It is clear that gH �~x; ~k�P g�~x; ~k� and that the optimal perturbations in (2.2) are
not Hermitian in general. The next theorem shows that requiring the pertur-
bations to respect the Hermitian structure in the Al has no e�ect on the
backward error, provided that ~k is real.

Theorem 2. If the matrices Al, l � 0 : m are Hermitian and ~k is real then

gH�~x; ~k� � g�~x; ~k�:

Proof. Let r � P �~k�~x be the residual of the pair �~x; ~k�. We ®rst ®nd a Hermitian
matrix S that satis®es the ®rst constraint in (2.4), S~x � ÿr. We take
S � �krk2=k~xk2�I if r is a negative multiple of ~x; otherwise we take
S � �krk2=k~xk2�H , where H is a suitably chosen Householder matrix. Such an
H exists if ~x�S~x � ÿ~x�r is real. But ~x�r � ~x�P �~k�~x, which is real since ~k is real.
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Let DAl be Hermitian matrices de®ned by

DAl � 1

~a
sign�~kl�kElk2; l � 0 : m; �2:5�

where ~a �Pm
l�0 j~kjlkElk2, so that DP �~k� � S. Using (2.3), we get

kSk2 � krk2=k~xk2 � g�~x; ~k�~a
and then from (2.5) we deduce gH�~x; ~k�6 g�~x; ~k�; since gH �~x; ~k�P g�~x; ~k�,
equality must hold. �

In general, even if the Al are Hermitian, the eigenvalues are complex.
However, for the case m � 1, if the pencil �A;B� is de®nite, that is, if it
satis®es

min �z�Az�2 � �z�Bz�2
� �1=2

: z 2 Cn; kzk2 � 1

� �
> 0; �2:6�

then its eigenvalues are real. For a proof see [24, Chapter 6]. An analogous
result exists for the case m � 2, that is, for the QEP. Let �k; x� be an eigenpair
for �k2A� kB� C�x � 0 with Hermitian A;B and C that satisfy

�z�Bz�2 ÿ 4�z�Az��z�Cz� > 0 for all z 2 Cn: �2:7�

Then k is a root of

k2x�Ax� kx�Bx� x�Cx � 0

and so is real. Inequality (2.7) is usually called the overdamping condition as it
corresponds to an overdamped physical system [5; 16, Chapter 7].

When eigenvectors are not computed, a more appropriate measure of the
backward error for an approximate eigenvalue may be

g�~k� :� min
~x6�0

g�~x; ~k�: �2:8�

Lemma 3. If ~k is not an eigenvalue of P �k� then

g�~k� � 1

~ak�P �~k��ÿ1k2

; �2:9�

where ~a �Pm
l�0 j~kjlkElk2.

Proof. The result follows from Theorem 1 on using the equality for a non-
singular matrix S 2 Cn�n, minx6�0 kSxk2=kxk2 � 1=kSÿ1k2: �
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In a similar way, we can de®ne the backward error for an approximate
eigenvector by

g�~x� :� min
~k

g�~x; ~k�: �2:10�

In general, this minimization problem is unsolved. For m � 1 with A1 � I (the
standard eigenvalue problem) and E1 � 0, g�~x� � ~x�A~x=~x�~x. For the generalized
eigenvalue problem, Higham and Higham [11] obtained an upper bound by
maximizing the numerator.

We de®ne the backward error of a triple �~x; ~y; ~k�, where ~y is an approximate
left eigenvector, by

g�~x; ~y; ~k� :� minf� : P �~k�~x� DP�~k�~x � 0; ~y�P �~k� � ~y�DP �~k� � 0;

kDAlk26 �kElk2 l � 0 : mg: �2:11�

Theorem 4. We have

g�~x; ~y; ~k� � 1

~a
max

krk2

k~xk2

;
ksk2

k~yk2

( )
; �2:12�

where r � P �~k�~x, s� � ~y�P�~k� and ~a �Pm
l�0 j~kjlkElk2.

Proof. By taking the 2-norms of r and s in the equation r � ÿDP �~k�~x and
s� � ÿy�DP �~k�, we ®nd that

g�~x; ~y; ~k�P 1

~a
max

krk2

k~xk2

;
ksk2

k~yk2

( )
:

To show that this bound is attained, we use a result of Kahan et al. [13,
Theorem 2] that states that

min kHk2 : H~x � r; ~y�H � s�
n o

� max
krk2

k~xk2

;
ksk2

k~yk2

( )
:

Let Hmin be a matrix that achieves this minimum and de®ne

DAl � ÿsign�~kl�kElk2

~a
Hmin; l � 0 : m: �2:13�

Then DP � ÿHmin, showing that the DAl are feasible perturbations, and

kDAlk2 �
kElk2

~a
max

krk2

k~xk2

;
ksk2

k~yk2

( )
;

so that the lower bound for g�~x; ~y; ~k� is attained. �

344 F. Tisseur / Linear Algebra and its Applications 309 (2000) 339±361



Note that Theorem 4 shows that g�~x; ~y; ~k� � max�g�~x; ~k�; g�~y; ~k��; that is, the
backward error of the triple is the maximum of the backward errors of the left
and right eigenvectors.

2.3. Condition number

Let k be a nonzero simple eigenvalue of a regular PEP with corresponding
right eigenvector x and left eigenvector y. A normwise condition number of k
can be de®ned by

j�k; P � � lim
�!0

sup
jDkj
�jkj : P�k� Dk� � DP�k� Dk�� ��x� Dx�

�
� 0;

kDAlk26 �kElk2 l � 0 : m
�
: �2:14�

Theorem 5. The normwise condition number j�k; P� is given by

j�k; P � � akyk2kxk2

jkjjy�P 0�k�xj ; �2:15�

where a �Pm
l�0 jkjl kElk2.

Proof. By expanding the ®rst constraint in (2.14) and keeping only the ®rst
order terms, we get

DkP 0�k�x� P �k�Dx� DP �k�x � O��2�:
Premultiplying by y� leads to

Dky�P 0�k�x� y�DP �k�x � O��2�:
Since k is a simple eigenvalue, y�P 0�k�x 6� 0 [1, Theorem 3.2]. Thus

Dk � ÿ y�DP �k�x
y�P 0�k�x �O��2�

and so

jDkj
�jkj 6

akyk2kxk2

jkjjy�P 0�k�xj �O���:

Hence the expression in (2.15) is an upper bound for the condition number.
To show that this bound can be attained we consider the matrix
H � yx�=�kyk2kxk2�, for which

kHk2 � 1; y�Hx � kxk2kyk2:
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Let

DAl � ÿsign�kl��kElk2H ; l � 0 : m:

Then all the norm inequalities in (2.14) are satis®ed as equalities and

jy�DP �k�xj � �akyk2kxk2:

Dividing by �jkjjy�P 0�k�xj and taking the limit as �! 0 gives the desired
equality. �

As for the backward error, if the Al are Hermitian, it is natural to restrict the
perturbations DAl in (2.14) to be Hermitian.

Lemma 6. Let Al, l � 0 : m be Hermitian matrices and k be a real eigenvalue.
Let jH �k; P � denote the condition number defined as in (2.14) but with the ad-
ditional requirement that the DAl are Hermitian. Then jH�k; P � � j�k; P �.

Proof. We can take y � x, so in the proof of Theorem 5, H � kxkÿ2
2 xx� which is

Hermitian. It follows that the perturbations for which the bound is attained are
also Hermitian. �

2.4. Comments

For our analysis we have used the 2-norm. However, our results can easily
be extended to the mixed subordinate matrix norm kAka;b on Cn�n de®ned by

kAka;b � max
x 6�0

kAxkb
kxka

;

as used in [11]. Furthermore, it is straightforward to derive componentwise
backward errors and condition numbers, as in [11], but we do not consider
them here.

As the PEP can be reformulated as a highly structured GEP, we could use
the GEP backward error and condition number that respect linear structure of
the matrices as developed by Higham and Higham [11]. However, the results
obtained using this approach are harder to interpret and more di�cult to
compute than the ones we have presented.

3. The quadratic eigenproblem

In this section, we consider the case m � 2, corresponding to the important
quadratic eigenvalue problem (QEP)

Q�k�x � �k2A� kB� C�x � 0: �3:1�
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This problem arises in many applications, including the ®nite element analysis
of automobile brakes [14], earthquake engineering [4] and the analysis of
conservative and non-conservative structural systems [23,28]. The QEP also
arises when solving least squares problems with quadratic constraints [7].

3.1. From quadratic to generalized forms

Few algorithms work directly on the QEP; for small dense problems most of
the ones that do are based on Newton iterations [15,19]. For a good review of
such methods, we refer to Ruhe [21]. More recently, Guillaume [10] developed
a new method based on the derivative of the function x�k� � Q�k�ÿ1b where b is
a given vector. For large sparse problems, Jacobi±Davidson techniques have
been investigated [22].

The usual way of dealing with the QEP (3.1) is to transform it into a GEP of
twice the order. There are several possible ways to carry out such a transfor-
mation. The most commonly used transformation is to companion form, given
by

GEP1 :
ÿB ÿ C

I 0

� �
n � k

A 0

0 I

� �
n; �3:2�

with

n � kx

x

� �
:

In many applications [16,18,23], the matrices A;B and C are Hermitian. Then
the following reformulations of (3.1) are Hermitian GEPs:

GEP2 :
A 0

0 ÿ C

� �
n � k

0 A

A B

� �
n; �3:3�

GEP3 :
B C

C 0

� �
n � k

ÿA 0

0 C

� �
n: �3:4�

These three are not the only possible formulations (see, e.g. [14]), but we will
restrict our analysis to them as they are the most common in the literature. The
analysis below is easily adapted for other formulations.

In practice, the choice of the GEP formulation depends on the properties of
the matrices A, B and C. When A is Hermitian positive de®nite then the second
matrix of the GEP (3.2) is Hermitian positive de®nite, too, and (3.2) can be
transformed to a standard eigenvalue problem:
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ÿAÿ1B ÿ Aÿ1C

I 0

� �
v � k

I 0

0 I

� �
v: �3:5�

A similar approach can be taken when C is Hermitian positive de®nite by
considering the GEP

L�l�x � 0; �3:6�
where L�l� � l2C � lB� A and l � 1=k. When A, B, C are all real symmetric
positive de®nite, Parlett and Chen [18] recommend the use of the GEP2 for-
mulation of (3.6) in the context of their pseudosymmetric Lanczos procedure.

For the special case A � I , Veseli�c [26] considers a class of transformations
of the the QEP into standard eigenvalue problems that have the smallest
Henrici departure from normality. Such transformations may decrease the
number of iterations of some numerical diagonalization methods.

3.2. Backward error of the GEP solution of the QEP

We assume that we have a backward stable algorithm, such as the QZ
algorithm, for computing a solution �~k; ~n� of a GEP

An � kBn:

This means that �~k; ~n� is the exact solution of a slightly perturbed pencil
� ~A; ~B� with

kAÿ ~Ak26 pAkAk2u; kBÿ ~Bk26 pBkBk2u; �3:7�
where pA and pB are polynomial expressions in n and u is the machine preci-
sion. If the pencil � ~A; ~B� comes from a GEP formulation of a QEP, then,
certainly, the perturbed matrices � ~A; ~B� will in general have lost their speci®c
structure (see for example (3.2)±(3.4)), so that ~A ~nÿ ~k ~B~n does not correspond
to a GEP formulation of the QEP (3.1). Van Dooren and Dewilde [25] show
that solving the PEP (1.1) with the companion formulation (1.5) and the QZ
algorithm is backward stable, where for the backward error they used the
weaker de®nition

gvdd :� minf� : �P�~k� � DP �~k��~x � 0; k�DAm . . . DA0�kF 6 �k�Am . . . A0�kF g;
�3:8�

where the Frobenius norm kAkF � trace�A�A�1=2
.

With our de®nition of backward error (2.2), in which each perturbation DAi

is measured relative to the matrix Ai that it perturbs, we need stronger as-
sumptions on the norm of the coe�cient matrices to get backward stability.

Theorem 7. If kAk2 � kBk2 � kCk2 � 1 then solving GEP1 with a backward
stable algorithm for the GEP is backward stable for the QEP.
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Proof. The proof is similar to the one given in [25]. Let � ~A; ~B� be the perturbed
pencil in (3.7). Using block Gaussian elimination and block scaling of the
pivots, we can construct nonsingular matrices G1 and G2 such that

�Aÿ ~k �B � G1� ~Aÿ ~k ~B�G2

with

�A � ÿ �B ÿ �C

I 0

 !
; �B �

�A 0

0 I

 !
;

that is, �Aÿ ~k �B is again a GEP1 formulation of a QEP. After some calcula-
tions, we ®nd that

kAÿ �Ak26 kAk2kAk2 � kBk2� �u;
kBÿ �Bk26 �1� kBk2 � kAk2�kAk2 � �1� kCk2�kBk2� �u;
kC ÿ �Ck26 �1� kBk2�kAk2 � kCk2kBk2� �u:

Backward stability is therefore assured for kAk2 � kBk2 � kCk2 � 1. �

Note that this result holds for the GEP1 formulation only. To illustrate, we
carried out some experiments in MATLABATLAB, for which the unit roundo� is
u � 2ÿ53 � 1:1� 10ÿ16. We used the direct search maximization routine
mdsmax of the MATLABATLAB Test Matrix Toolbox [12] and we applied it to
the function f �A;B;C� � g�~x; ~k�, where the eigenpair �~k;~x� is computed using
the QZ algorithm. It is easy to generate matrices A;B and C where
kAk2 � kBk2 � kCk2 � 1 and for which the backward error associated with the
GEP2 or GEP3 formulation is large. As an illustration, we report in Table 1 the
backward error for the smallest eigenvalue in absolute value of a 2� 2 sym-
metric QEP for which A;B and C are given to three signi®cant digits by

A � 9:88eÿ 1 1:49eÿ 1

1:49eÿ 1 ÿ8:04eÿ 1

� �
; B � 9:70eÿ 1 ÿ7:77eÿ 2

ÿ7:77eÿ 2 7:97eÿ 1

� �
;

C � 2:29eÿ 7 4:79eÿ 4

4:79eÿ 4 1

� �
: �3:9�

Table 1

Backward errors g�~x; ~k� for the QEP with data (3.9)

GEP2 GEP3

2:8� 10ÿ16 1:6� 10ÿ8
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We could not generate examples where the backward errors of the GEP2

and GEP3 formulations were simultaneously large. As expected from Theorem
7, all the QEPs we generated this way had good backward error when solved
with the GEP1 formulation. However, this is no longer true when A;B and C
vary widely in norm.

As for some problems such as the solution of the Riccati equation [9], a
scaling of the QEP could improve the backward error. We de®ne the scaled
QEP by

l2Aax� lBax� Cx � 0; �3:10�
with l � k=a;Aa � a2A and Ba � aB, where a is the scaling factor. Note that the
backward error is scale independent: if ~l � ~k=a, g�~x; ~k� for the original problem
equals g�~x; ~l� for (3.10). We generated a QEP where kAk2 � 103; kBk2 � 102

and kCk2 � 10ÿ4 and we used the GEP1 formulation with the QZ algorithm to
solve it. The backward error associated with the computation of the smallest
eigenvalue in absolute value without scaling was seven orders of magnitude
larger than the machine precision. We plot in Fig. 1 the in¯uence of a scaling a
in the range �0; 1� on the backward error and on the condition number. We also

Fig. 1. E�ect of varying scale parameter a.
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plot the variation in the computed eigenvalue and the norms of Aa;Ba. In this
particular example, the backward error is improved for su�ciently small values
of a. The variation in the computed eigenvalue decreases as the backward error
decreases. It seems that best results are obtained when kAak2 � kBak2. Theorem
7 suggests choosing a such that kAak2 � kBak2 � kCk2 but we cannot achieve
this with only one parameter at our disposal. It is not clear how to choose an a
that will ensure a good backward error.

Eigenvectors for the QEP (3.1) can be recovered as x1 � ~n�1 : n�=k or
x2 � ~n�n� 1 : 2n�. In our experiments, we noticed that the computed ~x1 and ~x2

can have greatly di�erent backward errors. Consider the GEP (3.2) corre-
sponding to the QEP (3.1) with

A � 1 0

0 1;

� �
B � 1 1

0 1;

� �
C � ÿ2t 1

0 4t2

� �
�3:11�

and t � 10ÿ5. We report in Table 2 the backward error for the eigenvalue of
smallest absolute value, k � ÿ4� 10ÿ10. While g�~x2; ~k� reveals good stability,
the backward error for �~x1; ~k� is six orders of magnitude larger than that for
�~x2; ~k�. The reason is that ~x1 is determined from small components of n and
these small components are computed relatively inaccurately. In examples
where k is large, we ®nd the converse situation: ~x1 gives a small backward error
but ~x2 does not. We conclude that one should determine the QEP eigenvector x
using whichever is the larger of x1 and x2 (which we did in the experiments
earlier in this section). This observation does not seem to have appeared in the
literature before, although it may be known to practitioners.

3.3. Condition numbers for the GEP formulations

Condition numbers and backward error are related to the accuracy of the
solutions by the inequality (1.3). Most of the algorithms applied to a GEP form
of the QEP do not preserve the structure. Hence it is the condition number of
the GEP form which is relevant. From Theorem 5 the normwise condition
number for k of the pair �A;B� is given by

j�k;A;B� � kvk2knk2�kEAk2 � jkjkEBk2�
jkjjv�Bnj ; �3:12�

where v and n are corresponding left and right eigenvectors with n � �kxT xT�T
and EA;EB are the matrices of tolerances against which the perturbations to A

Table 2

Backward errors for the QEP with data (3.11)

g�~x1; ~k� g�~x2; ~k�
1 ´ 10-11 2 ´ 10-17
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and B are measured. The left eigenvectors of the GEPs are also related to those
of the QEP, though not in the same way in each case.

Lemma 8. Let k be an eigenvalue of Q�k� and let y be a corresponding left
eigenvector. Then

v �
�ky

y

 !

is a left eigenvector of GEP2 and GEP3 with corresponding eigenvalue k and

v1 �
�ky

ÿC�y

 !

is a left eigenvector of GEP1 with corresponding eigenvalue k.

We de®ne �Ai;Bi� to be the pairs of matrices involved in the GEPi for-
mulations of the QEP (3.1), for i � 1 : 3. The next theorem gives an expression
for the condition numbers j�k;GEPi�, with EAi �Ai and EBi � Bi. It is now
convenient to impose a normalization on the eigenvectors of the QEP.

Theorem 9. Let k be a simple eigenvalue of Q�k� and x; y be corresponding right
and left eigenvectors normalized so that y�Q0�k�x � 1. Define

f �z� � kC
�zk2

kzk2

:

Then

j�k;GEP1� �
�������������������������������������������������
�1� jkj2��jf �y�j2 � jkj2�

q
jkj2 �kA1k2 � jkjkB1k2�kxk2kyk2;

j�k;GEP2� � 1� jkj2
jkj �kA2k2 � jkjkB2k2�kxk2kyk2;

j�k;GEP3� � 1� jkj2
jkj2 �kA3k2 � jkjkB3k2�kxk2kyk2;

Proof. From Lemma 8 we have

kvk2 �
����������������
1� jk2j

q
kyk2; knk2 �

����������������
1� jk2j

q
kxk2;

kv1k2
2 � jkj2kyk2

2 � kC�yk2
2 � �jf �y�j2 � jkj2�kyk2

2:
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Using y�Q0�k�x � 1, we get for the GEP2 formulation

v�B2nj j � j2ky�Ax� y�Bxj � 1:

For GEP1 and GEP3 we have

v�1B1n
�� �� � v�B3nj j � j ÿ k2y�Ax� y�Cxj

� j ÿ 2k2y�Axÿ ky�Bxj

� j ÿ 2k2y�Axÿ k� 2k2y�Axj � jkj:
The result follows on substituting into (3.12). �

The next lemma shows that the condition number for k in the GEP2 for-
mulation (respectively GEP3 formulation) of the QEP (3.1) is the condition
number for l � 1=k in the GEP3 (respectively GEP2 formulation) of the QEP
(3.6).

Lemma 10. Let k be a simple and nonzero eigenvalue of Q�k� and let l � 1=k be
an eigenvalue of L�l� � l2C � lB� A. Then

j�l;GEP2� � j�k;GEP3�; j�l;GEP3� � j�k;GEP2�:

Proof. Let x; y be the left and right eigenvectors of Q�k� and L�l� normalized so
that y�Q0�k�x � 1. We de®ne

A0
2 �

C 0

0 ÿA

� �
; B02 �

0 C

C B

� �
;

so that the GEP2 formulation of L�l�x � 0 is

A0
2n
0 � lB02n

0; with n0 � lx

x

� �
:

Let v0 � ��lyT yT�T. From the normalization condition y�Q0�k�x � 1 and the
fact that l � 1=k and y�Cx � ÿk2y�Axÿ ky�Bx, we have

jv0�B02n0j � j2ly�Cx� y�Bxj � 1:

Then,

j�l;GEP2� � kv
0k2kn0k2�kA0

2k2 � jljkB02k2�
jljjv0�B02n0j

� 1� jkj2
jkj2 �jkjkA0

2k2 � kB02k2�kxk2kyk2:
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But, kA0
2k2 � kB3k2 and kB02k2 � kA3k2 and from Theorem 9 we get

that j�l;GEP2� � j�k;GEP3�. The proof of j�l;GEP3� � j�k;GEP2� is
similar. �

These three condition numbers are quite di�erent, but given some infor-
mation on kAk2; kBk2 and kCk2 it is possible to compare them. As an illus-
tration, we consider in the next corollary the case where all the matrices have
unit norms.

Corollary 11. If kAk2 � kBk2 � kCk2 � 1, then, under the assumptions of
Theorem 9, we have

����������������������������������������������
�1� jkj2��f �y�2 � jkj2�

q
jkj2 �1� jkj�

6 j�k;GEP1�
kxk2kyk2

6

����������������������������������������������
�1� jkj2��f �y�2 � jkj2�

q
jkj2 �2� jkj�;

�1� jkj2�
jkj �1� jkj�6 j�k;GEP2�

kxk2kyk2

6 �1� jkj
2�

jkj �1� 2jkj�;

�1� jkj2�
jkj2 �1� jkj�6 j�k;GEP3�

kxk2kyk2

6 �1� jkj
2�

jkj2 �2� jkj�:

Proof. Note that

kA2k2 � kB1k2 � kB3k2 � 1: �3:13�
For A1 we have

kA1k26
ÿB 0

0 0

� �



 




2

� 0 C

I 0

� �



 




2

� 2

and

kA1k2 P
0 C

0 0

� �



 




2

� 1:

The same argument works for kA3k2 and kB2k2 so that

16 kA1k26 2; 16 kA3k26 2; 16 kB2k26 2: �3:14�
Substituing (3.13) and (3.14) into Theorem 9 gives the result. �
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We can now compare the condition numbers according to the magnitude of
jkj.

Corollary 12. If kAk2 � kBk2 � kCk2 � 1, then, under the assumptions of
Theorem 9, we have

for jkjP
���
2
p

; j�k;GEP1�6 j�k;GEP2�; j�k;GEP3�6 j�k;GEP2�;
for jkj6 2ÿ1=2; j�k;GEP2�6 j�k;GEP3�;
for jkj � 1; j�k;GEP2� � j�k;GEP3�;
for jkj � 1; j�k;GEP2� � j�k;GEP3�:

Moreover, if jkj � 1 and f �y� � 1 then

j�k;GEP1� � j�k;GEP3�:

The theorem and the corollary show that an eigenvalue of the QEP may be
much more or less sensitive to perturbations in the di�erent GEP formulations.
Of course, the perturbations allowed in the de®nitions of j�k;GEPi�; i � 1 : 3,
do not preserve the structure of the problems; if they did, then these condition
numbers would be equal to the condition number j�k;Q� for the QEP in (2.15).
The practical relevance of our observation is that the standard algorithm for
solving the QEP, the QZ algorithm, [8,17], does not preserve the structure of
the GEP formulations of the QEP in its backward error results.

We can also compare the condition numbers of the QEP Q�k� with that of
the ``reversed form'' L�l�.

Lemma 13. Let k be a nonzero eigenvalue of Q�k�, and let l � 1=k be an ei-
genvalue of L�l� � l2C � lB� A. If kAk2 � kBk2 � kCk2 � 1 then, for jkj � 1
and jf �y�j > jkj,

jL�l;GEP1� < jQ�k;GEP1�

and for jkj � 1,

jL�l;GEP1� > jQ�k;GEP1�

Proof. Let �A0
1;B

0
1� the pair of matrices corresponding to the GEP1 formu-

lation of the QEP L�l�x � 0. The corresponding left and right eigenvectors
with associated eigenvalue l � 1=k are given by

v01 �
�ly

ÿA�y

 !
; n0 � lx

x

� �
:
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It is easy to show that

j�l;GEP1� �
���������������������������������������������������
�1� jkj2��jkj2jg�y�j2 � 1�

q
jkj �jkjkA0

1k2 � kB01k2�kxk2kyk2;

where g�y� � kA�yk2=kyk2. As kB01k2 � 1 and 16 kA0
1k26 2, the ®rst in-

equality of the lemma follows. �

In practice, when an iterative method, such as the Arnoldi method, is used
to ®nd a few low-frequency modes k (small k, that is, large l), the GEP1 for-
mulation of L�l� seems to be preferred to the GEP1 formulation of Q�k� [3].
Fortunately, the previous theorem states that for a small eigenvalue k, the
GEP1 formulation of L�l� leads to a better condition number than the GEP1

formulation of Q�k�.
In our experiments, we used the implementation of the QZ algorithm in the

LAPACK library (routine xGEGV) to compute the solution of the GEP. Unlike
the qz function of MATLABATLAB, which is based on a routine from EISPACK and
does not compute left eigenvectors, this routine computes both left and right
eigenvectors. In the current release of LAPACK (verion 2.0) the routine
xGEGV performs by default ``full balancing'' on the matrices A and B. This
involves permutations together with a diagonal similarity transformation
(``scaling'') to make rows and columns as close in norm as possible. Full bal-
ancing is an attempt to reduce the 1-norms of the matrices and to improve the
accuracy of the computed eigenvalues and eigenvectors of the GEP [27] but it
has no in¯uence on the conditioning of the GEP. The rest of our computations
were carried out with MATLABATLAB. The approximate eigenvalue ~k was computed
in single precision (unit roundo� us � 2ÿ24 ' 5:9� 10ÿ8). For the computation
of the relative error, the condition number and the backward error, we took as
exact eigenpair the eigenvalue and eigenvector computed in double precision
(ud � 2ÿ53 ' 1:1� 10ÿ16). In our experiments we computed these measures
both with and without scaling and did not notice any major di�erences.

Example 1. To verify the results of Corollary 12, we generated random ma-
trices of 2-norm approximately 1. As an illustration, consider the following
matrices for which we give only two signi®cant digits:

A � 0:81 ÿ0:38

ÿ0:41 0:19

� �
; B � ÿ0:24 0:97

ÿ0:021 0:086

� �
;

C � ÿ0:11 ÿ0:057

ÿ0:88 ÿ0:46

� �
:

�3:15�

The associated QEP has one large eigenvalue k1 � 2:16� 102, one small ei-
genvalue k2 � ÿ4:61� 10ÿ4 and a complex conjugate pair k3;4 � 0:911� 1:22i.
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We report in Table 3 the relative errors and condition numbers. As expected,
for the large eigenvalue,

j�k;GEP2� � j�k;GEP3�; j�k;GEP2� > j�k;GEP1�:
For the small eigenvalue,

j�k;GEP2� � j�k;GEP3�; j�k;GEP1� � j�k;GEP3�
with f �y� � 4:5� 10ÿ4 � 1 as in the assumption of Corollary 12. Note that the
relative errors of the computed eigenvalues re¯ect the conditioning of the GEP,
con®rming that the accuracy of the computed eigenvalues depends on the
choice of GEP formulation.

Example 2. We now consider the connected damped mass-spring system il-
lustrated in Fig. 2. The ith mass of weight mi is connected to its �i� 1�st
neighbour by a spring and a damper with constants ki and di, respectively. The
ith mass is also connected to the ground by a spring and a damper with con-
stants ji and si, respectively. The vibration of this system is governed by a
second-order di�erential equation

Table 3

Relative errors and condition numbers for the QEP (3.15)

Type of formulation

GEP1 GEP2 GEP3

jk1j Relative error 6.6eÿ 5 5.8eÿ 3 2.14eÿ 5

2:1� 102 Condition number 5.3e� 2 1.7e� 5 5.3e� 2

jk2j Relative error 8.3eÿ 5 1.1eÿ 5 6.4eÿ 2

4:6� 10ÿ4 Condition number 4.5e� 3 2.3e� 3 5.3e� 6

jk3;4j Relative error 1.8eÿ 7 4.7eÿ 7 1.8eÿ 7

1:5246 Condition number 6.6 11.5 6.3

Fig. 2. An n degree of freedom damped mass-spring system.
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M
d2

dt2
x� D

d

dt
x� Kx � 0;

where the mass matrix M � diag�m1; . . . ;mn� is diagonal, and the damping
matrix D and sti�ness matrix K are symmetric tridiagonal and are de®ned
by

D � P diag�d1; . . . ; dnÿ1; 0�P T � diag�s1; . . . ; sn�;
K � P diag�k1; . . . ; knÿ1; 0�P T � diag�j1; . . . ; jn�;

with P � �dij ÿ di;j�1�, where dij is the Kronecker delta.
Let m � max16 i6 n mi, d � kDk2 and k � kKk2. Then we have

kA2k2 � max�m; k�; k6 kA3k26 d � k;

m6 kB2k26m� d; kB3k2 � max�m; k�:
Using Theorem 9, we conclude that

j�k;GEP2�P j�k;GEP3� for jkjP d � k
m

� �1=2

;

j�k;GEP2�6 j�k;GEP3� for jkj6 k
m� d

� �1=2

:

Fig. 3. Conditioning of the eigenvalues of a 5-degree of freedom damped mass-spring system.
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In our experiments, we took all the springs (respectively dampers) to have
the same constant j (respectively s), except the ®rst and last ones for which
j1 � jn � 2j and s1 � sn � 2s. Then

D � s tridiag�ÿ1; 3;ÿ1�; K � j tridiag�ÿ1; 3;ÿ1�;

so that we have an explicit formula for d � kDk2 and k � kKk2 depending on
the degrees of freedom of the damped mass-spring system n and the constants s
and j.

For n � 5; m � 1; s � 10; k � 5, we plot in Fig. 3 the condition number of
each eigenvalue for the GEP2 and GEP3 formulations. The theory says
that

j�k;GEP2�P j�k;GEP3� for jkjP 3:8730;

j�k;GEP2�6 j�k;GEP3� for jkj6 0:6742;

which is con®rmed by the numerical results.

4. Conclusions

We have derived new computable backward errors and condition numbers
for the PEP. The most common way of dealing with the PEP is to reformulate
it as a GEP. We used our expressions to show that backward stable algorithms
for the GEP that do not respect the special structure of the GEP formulations
can be backward unstable for the QEP. We investigated the possibility of using
a scaling of the QEP to improve the backward error of the solutions obtained
via the GEP formulations. It is an open problem to ®nd a scaling that opti-
mizes the backward stability.

We analyzed the sensitivity of three GEP formulations of a QEP and
showed that given some information on the norm of the coe�cient matrices we
can identify which formulations are preferred for the large and the small ei-
genvalues, respectively. These results are of practical relevance as in applica-
tions it is often only the eigenpairs corresponding to small or large eigenvalues
that are of interest [2,14].
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