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Abstract. We develop algorithms that construct robust (i.e., reliable for a given tolerance
and scaling independent) rational approximants of matrix-valued functions on a given subset of the
complex plane. We consider matrix-valued functions provided in both split form (i.e., as a sum of
scalar functions times constant coefficient matrices) and as a black box form. We develop a new error
analysis and use it for the construction of stopping criteria, one for each form. Our criterion for split
forms adds weights chosen relative to the importance of each scalar function, leading to the weighted
adaptive Antoulas—Anderson (AAA) algorithm, a variant of the set-valued AAA algorithm that can
guarantee to return a rational approximant with a user-chosen accuracy. We propose two-phase
approaches for black box matrix-valued functions that construct a surrogate AAA approximation in
phase one and refine it in phase two, leading to the surrogate AAA algorithm with exact search and
the surrogate AAA algorithm with cyclic Leja-Bagby refinement. The stopping criterion for black
box matrix-valued functions is updated at each step of phase two to include information from the
previous step. When convergence occurs, our two-phase approaches return rational approximants
with a user-chosen accuracy. We select problems from the NLEVP collection that represent a variety
of matrix-valued functions of different sizes and properties and use them to benchmark our algorithms.
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1. Introduction. Consider a matrix-valued function F': Q — C"*" defined on
a nonempty open subset €2 of the complex plane and its rational approximant

(1.1) R™(2) = bo(2)Ro 4 b1(2) Ry + - 4 by (2) R

on the compact target set Xp C Q. The R; € C**™ in (1.1) are constant-coefficient
matrices, and the b; are polynomials of degree at most m or rational functions of type
(m,m), that is, quotients of polynomials of degree at most m. Such approximants
play an important role in model order reduction [1, 2] and the solution of the nonlinear
eigenvalue problem (NEP) for F on X [13, sect. 6]. The latter consists of finding all
the pairs (A, v) € 7 x C™\ {0} such that

(1.2) F(\)v = 0.

A scalar X satisfying (1.2) is an eigenvalue of F', and v # 0 is the corresponding
eigenvector. If R™) approximates F well on Y, then, rather than solving the NEP
(1.2), we can solve the rational eigenvalue problem

(1.3) R™ (N =0,

which is still nonlinear in A but simpler to solve numerically as long as R("™) is ex-
pressed in an appropriate basis. Indeed, in this case linearization techniques exist that

*Submitted to the journal’s Methods and Algorithms for Scientific Computing section November
16, 2020; accepted for publication (in revised form) April 27, 2022; published electronically August
15, 2022.

https://doi.org/10.1137/20M 1380533

fDepartment of Mathematics, The University of Manchester, Manchester, M139PL,
UK (stefan.guettel@manchester.ac.uk, gianmaria.negriporzio@manchester.ac.uk, francoise.tisseur@
manchester.ac.uk).

A2439

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/20M1380533
mailto:stefan.guettel@manchester.ac.uk
mailto:gianmaria.negriporzio@manchester.ac.uk
mailto:francoise.tisseur@manchester.ac.uk
mailto:francoise.tisseur@manchester.ac.uk

Downloaded 09/12/22 to 154.59.124.59 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A2440 S. GUTTEL, G. M. NEGRI PORZIO, AND F. TISSEUR

allow the n x n rational eigenproblem (1.3) to be rewritten as a linear eigenproblem
LNz =0

of larger dimension (typically mm x nm) that can then be solved by a variety of
algorithms [13]. All that is left to do is to recover approximate eigenpairs (A, v) of
F(\) from approximate eigenpairs (A, z) of L(A). The quality of such NEP eigensolvers
depends on a good understanding and careful implementation of all these steps. In
particular, it is important that R(™ is a good uniform approximation of F on the
target set X so that the eigenpairs of the two eigenproblems are related.

In this paper, we focus on the numerical construction of rational approximants
that are robust in the sense that they are reliable for a given tolerance and are
scaling independent. To be more specific, for the numerical construction of such
approximants we use a discrete compact set ¥ C ¥p in place of the target set X
(X is usually a fine mesh of the compact superset ¥, or its boundary contour). For
a given tolerance ¢ > 0, we describe four algorithms that, when successful, return
rational approximants R("™) satisfying

(1.4) |IF = RM™||, < el|F|,,
where
(1.5) 1F1ls = max || F(2)]]2.

When F and R(™ are continuous on X7, we argue in section 2 that (1.4) implies that
(16) HF - R(m)HZT < €Cy HFH):T

holds for some constant ¢, > 1. As a consequence of (1.6), we show that any eigenpair
(A, v) of RU™ with A € $7 is an exact eigenpair of the perturbed matrix-valued
function ' + AF with |AF|; < cgel[F[;,.. We consider both the case where F is

provided in the split form?!
an PE) = ()4,
j=1

with A; € C™"*™ and the f;(z) being functions defined on Q, and the case where F' is
provided as a black box that only returns evaluations F(zp) for zy € .

There is a growing body of work on the approximation or interpolation of matrix-
valued functions. Taylor approximation has been applied successfully, in particular to
NEPs arising in delay differential equations [16]. Chebyshev interpolants are more ap-
propriate for NEPs with eigenvalues lying on a smooth curve in the complex plane [7].
For the nonlinear eigensolver NLEIGS, Giittel et al. used a rational Leja—Bagby sam-
pling approach to construct a rational approximant R(™), where the b;j in (1.1) are
rational Newton basis functions [12]. Hochman [15] and Lietaert et al. [17] showed
how to extend the adaptive Antoulas-Anderson (AAA) algorithm [18] from scalar
functions to a set of multiple scalar functions, with the rational approximants for
each function expressed in barycentric form. This led to the fastAAA algorithm for
rational fitting [15] and the set-valued AAA algorithm for NEPs [17], which require

LObserve that we can always express F(z) in that form with at most s = n? matrix coefficients.
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F to be provided in the split form (1.7). Saad, El-Guide, and Miedlar [19] used the
Cauchy integral formula to approximate the scalar functions f; in (1.7) by a rational
function and applied this approach successfully to solve acoustic nonlinear problems
[8]. Elsworth and Giittel [9] showed how to construct a matrix-valued rational ap-
proximant with the AAA algorithm when F' is provided as a black box function, using
a scalar surrogate function f for F', and named this approach surrogate AAA. This
surrogate approach in combination with the NLEIGS method is implemented in the
NEP module of the SLEPc library [4]. A drawback of the surrogate AAA approach
is that there might be a significant gap between the accuracy of the scalar surrogate
approximant for f and the accuracy of the matrix-valued approximant for the orig-
inal function F. In the SLEPc implementation, this is addressed by polynomially
expanding the surrogate rational approximant with poles placed at infinity.

In all the above approaches, the computed families of rational approximants share
the same barycentric scalar support points and weights, and therefore all functions
share the same set of poles. A recent preprint by Gosea and Giittel describes a
block-AAA algorithm which is based on a barycentric formula with matrix-valued
weights [11]. This approach can deliver accurate rational approximants of lower order
compared to algorithms using scalar weights, but the involved linear algebra compu-
tations currently make it only suitable for problems of very small dimensions. None
of the above contributions provide an error analysis of the expected approximation
accuracy returned by the proposed algorithms.

The main contributions of our work are as follows:

e In section 2, we provide an error analysis for the eigenpairs of F' computed
from a rational approximant R("™) ~ F. This analysis gives insights into the
sampling accuracy required to solve NEPs with a guaranteed backward error,
an essential requirement for a robust eigensolver.

e In section 3, we apply the new error analysis for the development of a stop-
ping criterion for rational approximation procedures that exploit the split
form (1.7). Our criterion includes weights that are chosen relative to the
“importance” of each function f;. This leads to a new variant of the set-
valued AAA algorithm, called weighted AAA, that guarantees to return a
rational approximant with a user-chosen accuracy and possibly lower degree
than set-valued AAA.

e In section 4, we consider the problem of approximating F' given only as a black
box. Here we introduce several two-phase methods that combine the ability
of surrogate AAA to identify good pole parameters with the robustness of
the Leja—Bagby approach in NLEIGS. Here our contributions over previous
works are three-fold.

— Instead of refining the surrogate AAA approximant by poles at infinity as
in [4], we argue that poles should instead be ordered in the Leja—Bagby
manner and then be repeated cyclically.

— Instead of discarding previous evaluations of the surrogate f(z) at sam-
pling points z;, which involves expensive evaluations of F(z;), we show
how to reuse these computations for the second phase of our algo-
rithm. While the resulting rational approximant R(™ combines data
in barycentric and Newton forms, the rational eigenproblem (1.3) is eas-
ily linearized as shown in Appendix A. Hence, this rational approximant
in mixed bases can be used as part of an NEP eigensolver.

— We propose a stopping criterion that is less strict than the divided differ-
ence based criterion in [12], typically leading to approximants of slightly
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lower degree without sacrificing accuracy.

e Finally, section 5 contains a comprehensive comparison of the discussed al-
gorithms on a large range of problems from the NLEVP collection (version
4.1) representing a variety of matrix-valued functions with different sizes and
properties. We believe this is the first comparison of so much detail available
in the literature. MATLAB codes needed to reproduce these experiments are
available from https://github.com/Gmnp/nep2rat. Our set of benchmark
problems may be useful for future developments of eigensolvers for nonlinear
eigenvalue problems.

2. Error analysis of approximate eigenpairs. Let ¥ C ¥ C Q C C be the
sets introduced in section 1, and let F': 2 — C™*". One of the objectives of this paper
is to numerically construct an approximant R(™ of F on the discrete set ¥ such that
(1.4) holds. This does not in general guarantee that the relative error of R™ on the
target set X7 will be bounded above by the given tolerance €. But assuming that F
and R("™ are (uniformly) continuous on X7, we can argue using [5, Lem. 2, p. 86]
that (1.4) implies

IE = RO, < wp(6) +wpom (8) + el Flls,.,

where

wr(0) = it [F(z) = F(y)ll2

is the modulus of continuity of F (and likewise for R(™) and

4 = max min|o — z|
z€EXT 0€EX

is the “density” of 3 in the target set Y. If for a given € we choose § such that
wp(8) + wrem (0) < el[Flly,,

then (1.6) holds for ¢y, = 2. Hence, the relative error on the target set ¥ can be
controlled by the relative error on the finite set X provided that ¢ is sufficiently small,
i.e., X is sufficiently dense in .

The above argument also applies if both F' and R("™ are holomorphic in Q and
¥ is a sufficiently fine discretization of the boundary 03¢. In this case, (1.4) implies
(1.6) with X7 replaced by 0Xr, i.e.,

HF_R(m)”azT < 5CaET”FHaET’

with some constant c,,, . By the maximum norm principle (see, e.g., [6, Thm. 2]),
HFHazT = ||F||s, and therefore

IF = Ry, < ey, |IFlls,

o0

Now suppose we have an approximant R("™) to F satisfying (1.6). Can we use any
computed eigenpair of R(™ as an approximate eigenpair of F? Let us look at back-
ward errors. A natural definition for the backward error ng (X, v) of an approximate
eigenpair (X, v) of F with X in the target set X is given by

(21)  nr(\,0) =min{e: (FQ\) + AFN)o =0, [|AF|,, <el|F],,}-
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Starting from (F(X) + AF(X))3 = 0, we find that
IFN)ll2 = [AFNl2 < [AFN)|2[8]l2 < [AF |5, [8]l2 < &l Fll,, [5]2,

so that
B IIFlllelvHa

~

This lower bound on ng(A,?) is attained by the perturbation

3

AF(z) = —F(\)

*

<)
<)

Indeed, for this perturbation we have that (F(X)+AF (X))o = 0, so the first constraint
n (2.1) is satisfied. Moreover,

IEQ)E]s _ [FO)3ll2

|AF]l;, = S IAF(2)[|2 = 1Els, -
o Bl 1N, 0l

Hence, for the backward error nF(X,ﬁ) in (2.1), we have the explicit expression

1)z

(2.2) e\ 0) =
r IF]5, 19]2

Now if we can construct an approximant R("™) of F such that (1.6) holds and if (X, v)
is a computed eigenpair of R™) with backward error ngwm (A,0), ie., (R™(A) +
ARM™ (X))o = 0 with [|AR™ ||, = ngem (A, 0)||R™|;, , then

IFQ)Dllz_ [IFQ)D — RO ()8 — AR ()]s
1Ells, [[2]]2 1E]ls,. [[2]]2
IF = R, ARl
- IFls, 1E]s,,
IR™ |, <
T rem (A, D)
1Fl,

(2.3) < 2¢,6 + Npom (A, D),

np(X,0) =

<cze+

where we used ||R(™) ls, /I Flls, <cge+1for the last inequality. As a result, if (X, v)
with \ € Yr is a computed eigenpair of R(™) with backward error NR(m) (X, v) < e,
then as long as ¢, is not too large, we can expect (A, ) to be an approximate eigenpair
of F with a backward error np(\,0) < €. We illustrate this in Example 2.1 below.
The explicit formula in (2.2) is not practical due to the presence of the Xp-norm
in the denominator. Hence, when computing backward errors, we use instead the
upper bound
s IFEQY
Np(A0) = ===
’ Il lloll2

This affects the bounds in (2.3) by a factor |[F|ly_ /|| F]l,-
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Ezxample 2.1. Let us consider the 2 x 2 matrix-valued function
iz 1
2.4 F(z) = |©
(2.4 @= 1
which has eigenvalues

)\172 = O7 )\3 =V 27T'7 )\4 =iV 7T )\5 —1\/ /\6 = —V 2w

in the target set X7, which for this example is a disc centered at 0 with radius 3. For
the finite set ¥ C X, we generate 1000 random points inside X7 and another 200
points uniformly distributed on the boundary of ¥7. We then construct four rational
approximants of F' on ¥ having different degrees m and relative errors; see columns 1
and 2 in Table 1. The computed eigenpairs ()\], ;) of R™ with eigenvalues )\ S
are returned as approximate eigenpairs of F. The corresponding backwag\d errors
are displayed in Table 1. We checked that for all these eigenpairs, Nrem (Aj,705) <

7 x 10715, As predicted by (2.3), the backward errors ﬁF()\j,vj) are smaller than

e = ||F — R™|,/|IF|l,. We also see that the smaller ||F — R(™|_/|F||, is, the

smaller the backward errors 7g ()\J, v;) are.

Since we know the exact eigenvalues, we can compute the absolute errors for the
double and defective eigenvalue at 0 and the relative errors for the other nonzero
eigenvalues. These are provided in Table 2. Assuming that they satisfy the rule of
thumb that

forward error < condition number x backward error,

we anticipate that the nonzero simple eigenvalues As, ..., A\¢ have a condition number
of order 103. A normwise condition number for a nonzero simple eigenvalue A\ € Xr
of F' with eigenvector v that is consistent with the backward error definition in (2.1)
is given by

AX

kr(A) = limsup {5)\ F(EA+ AN +AFA+ AN)(v+ Av) =0, [[AF,,, <ellFly, } .
e—0

Following the proof of [13, Thm. 2.20], we find that

115, [lwll2flll2

wr ) = X o]

where w is a left eigenvector of F' with corresponding eigenvalue A\. Now for F in
(2.4) we find that [|F||, =~ e” ~ 8 x 10°. Also, all the left and right eigenvectors of

F' are nonzero multiples of [ ] An easy calculation shows that

[wlizllvll2/(Asllw” F'(Az)vl) = 1/(27)

so that kp(\;) &~ 1.3 x 103, j = 3,...,6, as anticipated from the numerical experi-
ments.

A rational approximant R("™ to F satisfying (1.6) may have more eigenvalues
than F', but in what follows we argue that these will be outside the target set X
when F and R("™) are uniformly continuous on X7 and ¢ is sufficiently small. Consider
the ecy-spectrum of F (see [13, sect. 2.7]),

Ace (F) = U  AF+AR) ={zeSr:||F() ;" <ecs|Flls, )

=
AFeEH (S ,CnXn)

I18Fly, <ceslIFlg,,
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TABLE 1
Backward errors for approximate eigenpairs of F in (2.4) computed as eigenpairs of R(m),

A2445

IF—R™|| 4

moE Qo) e(e ) arQa ) mrGa ) 1r0e, ) e (e )
14 3.3e-5 2.5e-8 2.6e-8 7.0e-7 1.6e-6 1.7e-6 1.2e-6
18 1.8e-7 1.4e-10 1.4e-10 2.0e-9 2.9e-9 4.8e-9 2.0e-9
22 3.6e-10 9.1e-14 9.1e-14 2.7e-12 7.8e-13 3.7e-12 3.2e-12
28 1.5e-14 1.4e-15 1.4e-15 3.4e-15 7.4e-16 1.5e-15 4.9e-15
TABLE 2
Absolute and relative errors for approzimate eigenvalues of F in (2.4) computed as eigenvalues
of R(™) .
IF—R™)||, N N A3 3] |As— s A5~ s A6 el

m AT M=l Pe el S i %] ol

14 3.3e-5 1.7e-2 1.7e-2 6.4e-4 1.5e-3 1.5e-3 1.1e-3

18 1.8e-7 1.2e-3 1.3e-3 1.8e-6 2.7e-6 4.4e-6 1.8e-6

22 3.6e-10 3.2e-5 3.2e-5 2.5e-9 7.1e-10 3.4e-9 2.9e-9

28 1.5e-14 4.0e-6 4.0e-6 3.1e-12 6.8e-13 1.3e-12 4.5e-12

Let p € Xp. If p ¢ Acc (F), then F(u) is nonsingular and for any approximation
R™)(2) of F(z) satisfying (1.6) we have that

1= F() " RO (i)ll2 < 1F (1) = RO ()21 F (1)~ 12
< ecg||F s, IF ()2 <1

so that F(u)"*RU™ () is nonsingular and so is R™)(u) (in the second inequality
above, we used |[F — R, < ¢||F|l, = ||F — R(m)HZT < ecg||Fy, . as argued at
the start of section 2). It then follows that y is not an eigenvalue of R (z). By
contraposition, if 4 is an eigenvalue of R("™) then p is in the ecy,-spectrum of F; i.e.,
p is an eigenvalue of ' + AF with |AF||, = < ecg||F|,, An eigenvalue of R(™) that
is not in AEC: (F) must be outside the target set Y.

3. Matrix-valued functions in split form. A natural approach to approxi-
mating a matrix-valued function F provided in split form (1.7) with a rational ap-

proximant R("™) consists of approximating the scalar functions f; with scalar rational

(m)

functions 7,7, j =1,...,s, and letting

(3.1) R™(2) := zs:rj(-m)(z)Aj =: f: bi(2)R;,
j=1 =0

where the b;(z) are as in (1.1). The rational approximants p{m

in several ways. We concentrate on the following. ! R
Cauchy approximation. When the f; in (1.7) are holomorphic on ¢ D X7,
El-Guide, Miedlar, and Saad [8] and Saad, El-Guide, and Miedlar [19] use
Cauchy’s integral formula to rewrite the f; as

f](z) — L Mdu’

27 JoS, U — 2

can be constructed

ZEiT\aiT, jzl,,S

If the boundary 8§T of f)T is piecewise regular with parametrization
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~ 1 [0,27] = O, then the substitution u = y(t) leads to

)Y () p

— L.
27 Jo ~y(t) — 2

fi(z) =

A quadrature rule with m + 1 nodes o; and weights w; is then employed to
approximate the f; with the rational functions

(3.2) rgm)(z):i%_(?, j=1,...,s

=1

AAA approximation. The adaptive Antoulas—Anderson (AAA) algorithm aims
at interpolating a scalar function f: @ — C by a rational function (™
expressed in barycentric form [18]

3) CICE SEOY) SR

The core of the procedure is a greedy selection of support points ¢;, one at a
time, from a given discrete set 3 of M points. To be more specific, at step
m, the next support point o, is chosen such that

max_|f(0) —r""V(o)| = [f(om) = "D (om)],

Uez(m_l)

where X(m=1D = %\ {0¢,...,0m_1}. The vector of weights

w = [wOa w2, ... 7wm]T

is obtained by solving a least squares problem min,,—; A" wl|s with an
(M —m — 1) x (m + 1) Loewner matrix A(™ (see [18] for details). The
construction stops when

(3-4) 1f =7 = 1F =y < llflls,

where the norm on ¥ defined in (1.5) reduces to ||g||,, = max.ex|g(z)| for a
scalar function g.

For matrix-valued functions in split form (1.7), Hochman [15] and Lietaert
et al. [17] propose to approximate all the scalar functions f; with the AAA
procedure using the same support points and weights for all the functions f;.
This leads to the rational approximant

(m) fj Uzwz W; .
3.5 Ej YU =1,
(3:5) z—0; / — 2 -0y J °

=0

(m)

How well the rational 7;"" in (3.2) or (3.5) approximates f; on ¥ has a direct

consequence on how well R™ in (3.1) approximates F' on ¥. Indeed,

Z(f]( ) =™ (z

Jj=1

(86) [IF ~R™|, = max <Z||fj P 114 2.
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So we propose to use the stopping criterion
(3.7) Z 1f5 = 5™ 501450 < 28,

where (3 is a lower bound on || F|| that we assume can be computed cheaply. Then,
under the assumption that (3.7) holds, we have

|F — R(™ ||Z<Z||fj 114 ||2<Z\|fy—r NsllAjllr < eB <e||Flly.

Hence, if r](-m) in (3.2) or (3.5) satisfies (3.7), then the resulting rational approximation
RU™ in (3.1) is guaranteed to satisfy (1.4). A lower bound S on ||F||,. can be computed
as follows: let u € C™ be some normally distributed vector of unit length, and let
u; = Aju, j =1,...,5 Then we let

35 gk

ij Uj

The lower bound can be attained, but it can be several orders of magnitude smaller
than || F||,, with a bad choice for u. A poor lower bound will result in a few unnecessary
extra steps in the construction of the approximant and hence a larger degree m than
needed. The criterion (3.7) is scaling invariant in the sense that it applies to a R(™) and
oF if and only if it applies to R™ and F. However, the set-valued AAA algorithm
itself is affected by the rescaling of the functions f; and coeflicient matrices A;, even
if f;A; remains constant. This is because the algorithm involves the solution of least
squares problems and greedy searches for the next support point which are based on
the values of the functions f;, while the matrices A; never enter the computation of
the rational approximant. We hence recommend scaling each function f; to g;(z) =
a; fi(z) with a; = ||A4;||F so that the resulting coefficient matrices B; = A;/c; of
F(z) = >5_,9j(2)B; have unit norm. We refer to the AAA approximant R(™)
obtained with this scaling approach and the stopping criterion (3.7), the weighted
AAA rational approrimant.
For their set-valued AAA algorithm, Lietaert et al. [17] use

< [1Fls-

—rmy <
(3:9) ax [|f; —7; s < e max || fjll

as the stopping criterion. The latter satisfies

G10) =Rl < 35— 4yl < (s ax (1555145112 ).
Jj=1 -
Since (s maxi<j<s || fillsl[4;ll2)/||Flls = 1, we cannot conclude that (1.4) holds. Our
stopping criterion (3.7) takes into account the magnitude of the coefficient matrices,
while (3.9) does not. In particular, (3.7) assigns more importance to scalar functions
f; associated with coefficient matrices A; of large norm. As a consequence, if the
lower bound 3 on ||F||, is sharp, we can expect the construction of R(™ to stop
earlier with (3.7) than with (3.9). We will illustrate this behavior in section 5.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/12/22 to 154.59.124.59 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A2448 S. GUTTEL, G. M. NEGRI PORZIO, AND F. TISSEUR

—t+—Cauchy, a = 1.05
—&—Cauchy, a=1.1
Cauchy, a = 1.25
—©—Cauchy, a=1.5 |]
—AAA

10°

uniform error
—
S
i

10-10 L

10-]5 ! | | ! ! | BB%
0 50 100 150 200 250 300 350
degree m

Fic. 1. Demonstration of four different choices for the contour 8§T (a circle of center 0 and
radius ap) for the Cauchy approzimation of F in (2.4) on X, the disc of center 0 and radius p = 3.
Refer to Example 3.1 for a detailed discussion.

The Cauchy approximant (3.2) for holomorphic functions is in principle easy to
construct. However, it requires choosing a set iT D X7 such that the functions f;
are still holomorphic on f]T and with interpolation points on the boundary aiT that
are not too close to the boundary of 7. This makes an automatic implementation
of the Cauchy approximant difficult. The numerical experiments we conducted with
the trapezoidal rule on a variety of problems usually returned Cauchy approximants
of higher degree than that of the corresponding set-valued or weighted AAA approxi-
mants. On the other hand, for a holomorphic F on X7, the set-valued or the weighted
AAA procedure can return a rational R(™ with poles in Y7 (although we did not
observe this happening in the experiments we conducted).

Ezample 3.1. Let F be the 2 x 2 matrix-valued function in (2.4) with target set
Y1 the disc centered at 0 with radius p = 3. Rewrite F' in split form as

ro=f e

and construct a Cauchy approximant R(™ using the trapezoidal rule and contours
0% that are circles centered at 0 with radius ap, o € {1.05,1.1,1.25,1.5}. For each
value of a, we plot in Figure 1 the relative error |F — R"™)||./||F|y as the degree
or, equivalently, the number of quadrature nodes m increases. For the finite set X,
we generate 400 random points inside 7 and add 100 uniformly distributed points
on the boundary of ¥7. While the convergence is slow for « close to 1, it improves
for larger values of o, but the limiting accuracy of the approximation increases as
well. For comparison, we also plotted the convergence of the AAA approximant of F’
in (3.11).

The AAA approximation can stagnate when the tolerance ¢ is too small. We then
see numerical Froissart doublets appear. These are poles with very small residues or
pole-support point pairs that are so close together that they nearly cancel [10]. We
use the “clean-up” procedure described in [18, sect. 5] to remove them.
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The main cost in constructing a set-valued AAA approximant R(™ of F is the
solution of m least squares problems with matrices of size s(|X| — k — 1) x (k + 1),
k =1,...,m, which costs O(m3s|X|). Here |X| is the number of points in the finite
set ¥.. When F is provided as a black box function that only returns F(z) at some
point z € X, the split form can be constructed as

77,2

(3.12) F(z) =Y fi(2)Ae =D ) figoum(2)(ee]),
k=1 i=1 j=1

where f,. 1 (2) = el F(z)e;.
AAA approximant for the latter split form becomes expensive as s = n*. A given
F has infinitely many split forms that can lead to rational approximants, and there
is no guarantee the set-valued/weighted AAA approximants will all be of the same
degree. In the next section, we propose algorithms with a lower computational cost
when s =~ n? and the degree m of the resulting rational approximant is not much

larger than that of the set-valued AAA approximant.

But constructing the set-valued AAA or weighted
2

4. Two-phase approximation of black box matrix-valued functions. Els-
worth and Giittel [9] use the support points o; and weights w;, i = 1,...,m, from the
AAA approximant (™) of a surrogate scalar function

(4.1) f(z) =u"F(2)v,

where v and v are normally distributed vectors of unit length. The rational matrix-
valued approximant is then defined as

(4.2) RO (z) =Y FZ(Ui)wi 3 . ijia"
i=0 i=0 v

— 0
1

They refer to this approach as surrogate AAA, the latter being applicable to matrix-
valued functions provided in black box or split form. They argue that f has a region
of analyticity similar to F, and so the support points and the weights computed
for the AAA approximant of f should be good choices for the function F' as well.
The procedure stops when (3.4) holds. Unfortunately, there is no guarantee that
R™) ~ F with good accuracy; see also section 5. However, when combined with a
refinement phase, the surrogate approach can be a viable option. In particular, the
AAA approximant to the surrogate function (4.1) also provides information about the
location of poles that can then be fed to the NLEIGS Leja—Bagby sampling procedure
[12, sect. 5]. Indeed, the m poles of the AAA approximation (") of f in (4.1) or,
equivalently, the m poles of R(™) in (4.2) can be computed by following the procedure
in [18], i.e., by first constructing the (m + 2) x (m + 2) pencil

wo Wi ... W 0

0
1 (1) 1
1 g1 1

(4.3)
1 Om 1

then computing its eigenvalues, discarding the two eigenvalues at infinity, and return-
ing the remaining m eigenvalues as poles {\1,..., A\, } =: Z of R(™).
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Also, the first step of the AAA procedure applied to the surrogate function f
in (4.1) allows the computation of a lower bound for ||F||; at almost no extra cost.
Indeed, for surrogate AAA, f(z) = u*g(z) with g(z) = F(z)v is evaluated for all
z € X so that

(4.4) B = max|lg(=)]l2 < |[F]|,

is easy to compute. Having access to such a lower bound is useful when constructing a
stopping criterion that ensures that the rational approximant R(™) to F has a relative
error bounded by ¢ for some given tolerance € > 0.

4.1. NLEIGS with poles from surrogate AAA. The new NEP module in-
side the SLEPC library for the solution of nonlinear eigenvalue problems [4] starts by
constructing a surrogate AAA approximant to the scalar function f in (4.1) and then
feeds its poles to the NLEIGS Leja—Bagby sampling procedure [12, sect. 5]. This ap-
proach combines the convenience of the AAA algorithm, which only requires as inputs
samples of the function to be approximated, with the robustness and full parameter
control of the Leja-Bagby approach. By the latter we mean in particular that poles
returned from the surrogate AAA can be preprocessed before being used for the Leja—
Bagby procedure. This might be necessary in the case where AAA returns unwanted
poles in the target set Y. The NLEIGS with poles from the surrogate AAA algorithm
builds a rational approximation of the form (1.1) and works as follows.

Step 1. Run the AAA algorithm on the surrogate function (4.1) and discretized
target set X to compute the d + 1 support points ¢; and weights w;, i =
0,...,d, defining the AAA rational approximant r(¥(z) = ZLO Hoiw:

z—0;
Z?:O zfif,y .
Step 2. Compute the d poles of (9 (i.e., the eigenvalues of the pencil (4.3) with
m = d minus the two extra eigenvalues at infinity).
Step 3. Apply NLEIGS with Leja—Bagby sampling; i.e., start with a random point
0o € X, and let

R() = .F(O'())7 bo(z) =1
be the first term in (1.1). The Leja-Bagby pairs (o, &) are formed one at a

time using
(4.5) o = argmax|sy_1(2)], &k =argmin|sg_1(2)|, k=1,2,...,
zEX z€X
where
k k
su(z) =[G =)/ I[ - &)
7=0 Jj=1
£ 7#00
Then the coefficient matrix Ry and rational function by, in (1.1) are computed
as [12]
F(Jk) - Zk:ol bi(O'k)Ri Z—0k—-1
4.6 Ry, = = ; bi(z) = ———F=br_1(z
ws) R belv) M= B e )

with scaling parameters Sj such that ||by|lsy = max,coq|br(z)| = 1.
If the final degree of the NLEIGS approximation is m, then the computational cost of
this approach is O((n? 4 d®)|S| + n*m) since retrieving the poles from the surrogate
AAA procedure costs O((n? + d*)[Z|).
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4.1.1. Stopping criterion for the Leja—Bagby procedure. Giittel et al. [12]
stop the Leja—Bagby sampling procedure at step k = m when

(4.7) [Rmllr < el Rol| -

But if the Leja—Bagby procedure converges, then

F—-R™|_ = be(2)Re — Y br(2)Ri| < b Rill e
| s max kZ:O k(2) Ry, k;) k(2) Ry 2_k§+1gg” k(2)[2]| Rl 7

If none of the poles § are inside X, then the rational functions by in (4.6) are holo-

morphic on ¥ and by construction, max,ex [|bg(2)]l2 = ||br|ls = ||brllog = 1 so that
o0
IF = R™s < > IRy
j=m+1

Also, || F|ly > n~ Y2 maxo<i<m ||F(0k)||F, and since we assume that the Leja-Bagby
procedure converges, then for m large enough we have |R;||p < ||Rm|F for j > m
and Z;’;mﬂ IR;ll2 < K||Rml||F for some constant x > 1 (we use k = 4 in our imple-
mentation). Hence, instead of (4.7), we suggest stopping the Leja—Bagby procedure
when

9
. < -
(4.9 1Bonllr < = mmax (o),

which, once convergence has taken place, guarantees |F—R(™ ||, < ¢||F||,,. Note that
(4.8) is usually less strict than (4.7) since Ry = F(op). With (4.8) as the stopping
criterion, NLEIGS with Leja—Bagby sampling returns a rational approximant with
the required accuracy but with a smaller degree m than when (4.7) is used.

4.1.2. On the choice of poles to feed to the Leja—Bagby sampling proce-
dure. When the number of poles &1,...,&q in the approximant R(¥ returned by the
surrogate AAA procedure is smaller than the degree m needed to satisfy the NLEIGS
stopping criterion, i.e., d < m, Campos and Roman [4] suggest adding extra poles at
infinity. Using the denominator polynomial

qa(z) = (z = &)+ (2 — &a)
and the nodal polynomial
sd(z) = (z —0o0)(z —01) -+ (2 — 0q)

of the interpolation nodes o, we show that this approach is equivalent to computing
a polynomial interpolant P of degree m — d — 1 to the error function

(4.9) E(2) = qa(2)(F(2) — R“(2))/sa(2)
and then setting
(4.10) R(m)(z) = R(d)(z) + 34(2)P(2)/qa(2).

To this end, we need to recall a basic fact from linearized rational interpolation: a
rational function r(z) = p(2)/qa(z) of type (m,m) with fixed prescribed denominator
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¢q is uniquely determined by m + 1 interpolation conditions r(o;) = f; at distinct
points ¢;. The only requirement is that g4(o;) # 0 for all j =0,1,...,m. The same
result holds for a rational matrix-valued interpolant of the form R(z) = P(2)/qa(?),
where now P is a matrix polynomial of degree m because every matrix entry is a
scalar rational function with the interpolation property.

The interpolant obtained after d iterations of the surrogate approach is of the form
R9(2) = Q(2)/qa(z), with a matrix polynomial @ of degree d, and it interpolates F
at the nodes 0q, 01, ..., 04 by construction. After m —d more steps of the Leja—Bagby
procedure with poles 411 = --- = §,, = oo and interpolation nodes ogy1,...,0m,
we obtain a degree m rational interpolant R(™(z) = Q(z)/qq(z) satisfying m + 1
interpolation conditions at og,01,...,0.,. By uniqueness of the interpolant, this
function must coincide with R(™) defined in (4.10), which has the same denominator
qq and satisfies the same m + 1 interpolation conditions by construction.

The above discussion shows that choosing poles at infinity in the refinement phase
amounts to falling back to polynomial interpolation of the error function defined
in (4.9). The asymptotic convergence of this process is governed by the region of
analyticity of F in a neighborhood of the target set 3. Note that the roots o;
of s4 do not introduce singularities in E(z), as F(c;) — R (s;) = 0 due to the
interpolation conditions (j = 0,1,...,d). Also, qq(z)R is a matrix polynomial.
Hence, the asymptotic convergence of this polynomial interpolation process is entirely
governed by the region of analyticity of the original function F'.

In situations where rational interpolation is of advantage, e.g., if F' has singular-
ities nearby the target set X, falling back to polynomial interpolation might lead to
significant inefficiencies in the sampling procedure. On the other hand, in the refine-
ment phase we only have d pole parameters at our disposal. Our recommendation is
therefore to repeat these d poles cyclically in Leja—Bagby order; i.e., once the number
k of Leja—Bagby points generated by the sampling procedure exceeds d, the expression
for the poles & in (4.5) is replaced with

(4.11) §k = &1+ (k—1 mod d)

until we reach the final degree kK = m required to satisfy a stopping criterion. This is
no longer a true Leja—Bagby procedure as d pole parameters are repeated cyclically,
so we refer to it as the d-cyclic Leja—Bagby procedure. The Leja—Bagby ordering of
the poles ensures that the scalar basis functions b (z) defined in (4.6) vary only mildly
over the target set X, thus avoiding problems with numerical under- or overflow.

Ezample 4.1. In order to illustrate the above discussion, it suffices to consider a
scalar 1 x 1 NEP F(z) = f(2) = 0.2/ — 0.6 sin(2z), which can also be found in the
introduction of [12]. As target set we use the interval Y7 = [1072,4], discretized by
103 logarithmically spaced points (the discrete set 3). Figure 2 shows four convergence
curves each corresponding to one of the approaches discussed above:

o AAA (solid blue): This curve shows the uniform error max.es, |f(z) —
(™) (2)| of the degree m interpolant of f obtained by AAA. The algorithm
resolves f efficiently, with the degree 19 approximant achieving an error be-
low 1074, but we note the spikes in the curve for some degrees and overall
stagnation behavior with noisy fluctuations around =~ 10713,

e Leja—Bagby (dashed red with square markers): This curve corresponds to the
original NLEIGS approach in [12], computing Leja-Bagby points on X7 and
the singularity set of f, which is & = (—00,0]. The observed geometric
convergence behavior is robust, at an asymptotic rate that is given in terms
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—AAA
-8 -Leja-Bagby

LB(10)+infinite
——10-cylic LB

uniform error

0 10 20 30 40 50 60 70
degree m

Fi1G. 2. Demonstration of four different choices for the rational approximation of a scalar
function, including our proposed d-cyclic Leja—Bagby procedure (d = 10). Refer to Example 4.1 for
a detailed discussion.

of the logarithmic capacity of the condenser 1/cap(Xr, Z) =~ 0.569, i.e.,
M Sup,, o0 [ £(2) = 7 (2) |57 < exp(=1/cap(Sr, 2));

see, e.g., [12, 20] for more details. The downside of the Leja—Bagby approach
is that the singularity set = needs to be specified by the user, which might
be difficult in particular for NEPs given as a black box.

e LB(10)+infinite (dotted yellow with circles): This is similar to what is used
in [4], namely an initial phase of AAA (in this example d = 10 iterations),
followed by the Leja—Bagby procedure using the d poles obtained from the
AAA approximant, and then using poles at infinity for the remaining process.
We observe a sudden drop in error for degree 10, approximately to the level of
the AAA approximant of the same degree, but then a very slow convergence in
the refinement phase for degrees m > 10. As explained above, this approach
amounts to using polynomial interpolation in the refinement phase. For this
particular problem, an asymptotic geometric convergence rate of only (\f —
1)/(v/k + 1) = 0.905 is expected, where £ = max(Xr)/ min(Xr). We refer
the reader to the discussion in [12].

e 10-cyclic LB (solid purple with diamonds): This is our recommendation of
running an initial phase of AAA to get d = 10 poles and then repeating them
cyclically in Leja—Bagby order. This approach combines the convenience of
not having to specify the singularity set with the robust convergence of the
Leja—Bagby approach.

4.2. Surrogate AAA with exact search. The Leja—Bagby construction of
the support points in (4.5) does not use information from F', unlike the surrogate
AAA construction through the surrogate function f(z) = w*F(z)v. So instead of
constructing R(™ entirely with NLEIGS as explained above we propose to refine the
rational approximation

d
(4.12) RO() =y Lo [ —
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obtained after d steps of surrogate AAA. To this end, we modify the surrogate AAA
steps as follows. The support points are determined from

(4.13) o = argmax ||F(z) — R* V() |p, k>d,
zex(k—1)
where (51 = % \{oo,...,0k-1}. The weights w; are computed as for the surrogate
AAA approximation. The procedure terminates at step kK = m when
(4.14) max || F(z) R™ (2)|r < ef
zeX(m)

holds, where J is the lower bound for ||F||,, in (4.4). The rational approximant R(™)
then satisfies (1.4). We named this approach surrogate AAA with exact search on
Y. The overall computational cost is O((n?(m — d + 1) 4+ d*)|S|). When F(z) is
holomorphic in €2, we can remove all the sampling points in the interior part of ¥ and
only work on the boundary 0¥ = ¥ N 0Xp, which we call surrogate AAA with ezact
search on 0%.

Our numerical experiments in section 5 show that surrogate AAA with exact
search works well when the tolerance e > 0 in (1.4) is not too small. For small
tolerance, the fact that the weights are computed using the surrogate function (4.1)
prevents the procedure from reaching the required accuracy.

4.3. Surrogate AAA with cyclic Leja—Bagby refinement. Instead of re-
fining the surrogate AAA approximation R(? in (4.12) using surrogate AAA with
exact search, we propose refining R¥ with a d-cyclic Leja-Bagby procedure. To be
more specific, the surrogate AAA with cyclic Leja—Bagby refinement algorithm works
as follows:

Step 1. Run the AAA algorithm on the surrogate function (4.1) and discretized
target set X to compute the d + 1 support points ¢; and weights w;, i =
0,...,d, defining the type [d,d] rational approximant R® in (4.12) The de-
gree d is determined by the built-in stopping criterion of the AAA implemen-
tation aaa in [18] and provided in (3.4).

Step 2. Compute the d poles as in Step 1 of the NLEIGS with poles from sur-
rogate AAA procedure and reorder them using the Leja—Bagby ordering in
(4.5) to give &1,...,&q4.

Step 3. Apply the d-cyclic Leja—Bagby procedure; i.e., for each new pair of node
and pole (044, &da+4), where o4, is computed as in (4.5) and €44 as in (4.11),
construct

F(0ai) — R4 (044,) Cﬁ e i U
- B5(

4.15) Rgyi = s bdti
(4.15) o bayi(oati) a+il (1—z/&)

with 3; chosen such that ||bgyilloy, = max.cay |bati(2)| = 1. Terminate the
d-cyclic Leja-Bagby procedure at step k = m with m such that (4.8) holds.
This algorithm yields a rational approximation of the form

d d

F( ot w; w;

(416)  RU(z) =) = [y ——— b (2) Ragr + o b (2) R
i=0 v i= v

that satisfies (1.4). The operation cost for this approach is O ((n?+d?®)|S|+n?(m—d)).
We show in Appendix A how to rewrite the rational eigenvalue problem R (A\)v = 0
as a linear eigenproblem when R("™) is provided in the form (4.16).
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TABLE 3
List of benchmark examples from the NLEVP collection (3], their types and sizes, the target
set X (disc or half disc), and the number of eigenvalues in X. For the canyon_particle problem,
v =-9e-2+1e-6i. The fiber problem is holomorphic on its target set if we remove the negative real
numbers. Similarly, schrodinger_abc is holomorphic on Xr \ [—15, —10).

Name Type Size  Center Radius Half disc #evs Holomorphic
bent_beam nonlinear 6 60 30 yes 2 yes
buckling_plate nonlinear 3 11 9 no 12 no
canyon_particle square root 55 ¥ 0.1 yes 15 yes
clamped_beam_1d exponential 100 0 10 no 101 yes
distributed_delayl nonlinear 3 0 2 no 2 yes
fiber nonlinear 2400 0 0.002 yes 1 no
gun square root 9956 62500 50000 yes 21 yes
hadeler exponential 200 =30 11.5 no 14 yes
loaded_string rational 100 362 358 no 9 yes
nepl nonlinear 2 0 3 no 6 yes
nep2 nonlinear 3 0 2 no 4 yes
nep3 nonlinear 10 5i 2 no 14 yes
neuron_dde exponential 2 0 15 no 11 yes
pdde_symmetric exponential 81 0 2 no 59 yes
photonic_crystal nonlinear 288 11 9 no 28 yes
pillbox_small square root 20 0.08 0.05 yes 1 yes
railtrack2_rep rational 1410 3 2 no 53 yes
railtrack_rep rational 1005 -3 2 no 2 yes
sandwich_beam nonlinear 168 7000 6900 yes 7 yes
schrodinger_abc nonlinear 10 -10 5 no 6 no
square_root square root 20 104501 50 no 3 yes
time_delay exponential 3 0 15 no 8 yes
time_delay2 exponential 2 0 15 no 11 yes
time_delay3 exponential 10 2 3 no 38 yes

5. Numerical experiments. We test the robustness of the algorithms de-
scribed in sections 34, i.e.,
(i) for matrix-valued functions provided in split form:
e the set-valued AAA algorithm as in Lietaert et al. [17];
e the weighted AAA algorithm, which is the set-valued AAA algorithm
with stopping criterion (3.7) with 5 as in (3.8);
(ii) for matrix-valued functions provided as black box:
o the surrogate AAA algorithm proposed by Elsworth and Giittel [9];
e the surrogate AAA algorithm with exact search on XN OXr as described
in section 4.2;
o NLEIGS with poles from surrogate AAA as described in section 4.1 with
the new stopping criterion (3.7) (the d-cyclic Leja—Bagby procedure is
employed for the poles as explained in section 4.1.2);
e the surrogate AAA with cyclic Leja—Bagby refinement algorithm as de-
scribed in section 4.3.
We omit the Cauchy approximation (3.1)—(3.2) since we do not know of an automatic
way to choose an “optimal” contour for the Cauchy integral formula.
To benchmark these algorithms, we use the test problems from the NLEVP collec-
tion [3, 14] listed in Table 3 (24 problems). These problems are selected to represent
a variety of matrix-valued functions with different sizes and properties. For the al-

2We use an implementation provided by the authors of [9] with a few adjustments for the solution
of the least squares problems and cleanup of the Froissart doublets.
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gorithms requiring the split form (1.7) for F', we use that returned by the MATLAB
command [coeffs,fun] = nlevp('name',...), where coeffs is a cell array defin-
ing the coefficient matrices A; and fun is a function handle used to evaluate the
functions f;(z), j = 0,...,s. The number of terms s in the split form for the prob-
lems in Table 3 is never too large and varies between 2 for nep1 and 16 for bent_beam.
To test the algorithms for matrix-valued functions provided in black box form, we use
the third output F of [~,~,F] = nlevp('name',...), which is a function handle for
F. All our computations are done in MATLAB R2022a.

Experiment 1. For our first set of experiments, we discretize the target sets X
(either discs or half discs) as follows. We generate 300 random points inside X7 plus
another set of 100 uniformly distributed points on the contour of ¥p. In order to
guarantee that X is evenly covered, the 300 interior points are generated by slightly
perturbing a regular point grid. This gives a total of 400 points for the finite set 3.
We set the maximum number of steps to 60.

For a given tolerance € > 0 and each problem listed in Table 3, we test whether an
algorithm fails to construct an approximant R(™) with accuracy |[F — RU™ ||, /||F||.
below a given tolerance € > 0 or if it does not converge within the maximum number
of steps. We also compare the degrees of the resulting approximants. The results
are reported in Table 4 for ¢ = 10~7, Tables 5 and 6 for ¢ = 10710, and Table 7
for ¢ = 10713, Results for the rational problems loaded_string, railtrack2_rep,
and railtrack_rep are only reported in Table 4 since for these problems and any
tolerance ¢ < 107° all the algorithms return (rightly) a degree 2 rational approximant
with a relative error of about 1071°. The tables show that for our benchmark of test
problems and chosen tolerances € € {1077,10710,10713}:

(a) The set-valued and weighted AAA algorithms always return an approximant
R(™) with relative error below the required accuracy. For problems that
are holomorphic on the target sets, surrogate AAA with cyclic Leja—Bagby
refinement and NLEIGS with poles from surrogate AAA also return an ap-
proximant R("™) with relative error below the required accuracy.

(b) The set-valued and weighted AAA algorithms typically return the approx-
imants R(™ of lowest degrees. The degrees of the set-valued AAA and
weighted AAA approximants are more or less the same: they are usually
either equal or they differ by one. There are exceptions though such as with
the sandwich_beam and time_delay3 problems, for which weighted AAA re-
turns a lower degree approximant. These two problems have the particularity
that, when viewed in split form, the norms of their coefficient matrices have
large variations. The latter is exploited by the weighted AAA algorithm but
ignored by the set-valued AAA algorithm.

(¢) The surrogate AAA approach often fails to return a rational approximant
with relative accuracy below e. There is no surprise here since there is no
guarantee of any accuracy with the stopping criterion used by this algorithm.

(d) As expected by our analysis, surrogate AAA with exact search either returns
a rational approximant with relative error below the tolerance or fails to con-
verge. There is an exception though for the sandwich_beam problem and
tolerance ¢ = 10710 (see Table 5), where the constructed rational approxi-
mant R(™) is such that ||[F — R(™|./||F|, = 3 x 107'% > ¢ and hence is
marked as a failure in the table. The reason is that the exact search is done
on 0¥ = ¥ No%p and || - ||y, > || - |lox can happen since we work with a
discretization of Yr, and so the stopping criterion (4.14) does not guarantee
that (1.4) holds. This is not an issue if we do the exact search on ¥. For this
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TABLE 4
Degree of R(™) for e =10~7 and 24 problems. The lowest degrees are highlighted in bold/blue,
including any within one of the lowest and excluding those corresponding to failed required accuracy
that are provided within square brackets. A * indicates that the algorithm reached the mazimum
number of steps.

Problem Set-valued Weighted Surrogate Surrogate4+  NLEIGS  surrogate +
AAA AAA AAA exact search  AAA poles LB refine
bent_beam 7 7 [4] 8 11 11
buckling_plate 22 24 [22] 27 46 46
canyon_particle 13 12 [7] 17 20 20
clamped_beam_1d 11 11 [10] 16 24 25
distributed_delayl 6 6 [ 6] 9 11 11
fiber 12 10 [ 6] 14 20 18
gun 9 9 [ 5] [60]* 15 15
hadeler 2 4 2 6 15 7
loaded_string 2 2 2 2 2 2
nepl 20 20 20 20 20 20
nep?2 13 13 [ 9] [14]* 20 20
nep3 8 8 [7 10 16 16
neuron_dde 13 13 12 12 16 16
pdde_symmetric 8 8 [ 11 16 16
photonic_crystal 5 5 4 5 9 9
pillbox_small 7 6 [4] 9 11 12
railtrack2_rep 2 2 2 2 2 2
railtrack_rep 2 2 2 2 2 2
sandwich_beam 10 6 3 8 11 10
schrodinger_abc 11 11 [10] 14 20 20
square_root 9 10 9 9 12 9
time_delay 12 13 12 12 13 12
time_delay2 12 13 12 12 13 12
time_delay3 16 12 12 12 12 14
# of fails 0 0 12 2 0 0
# of lowest degree 21 21 12 11 7 7

particular example, if we increase the number of sample points on 9% from
100 to 300, then the surrogate AAA method with exact search on 90X toler-
ance € = 10719 returns a degree 13 rational approximant R("™) with relative
error 5 x 107!2, i.e., below the tolerance.
Also, Tables 4, 6, and 7 show that for a few problems the algorithm reaches
the maximum number of steps, i.e., 60 (indicated by red stars), while return-
ing approximants of degree less than 60. This is due to the removal of the
Froissard doublets (see the end of section 3).

(e) NLEIGS with poles from surrogate AAA repeated in a cyclic way has a behav-
ior similar to that of surrogate AAA with cyclic Leja—Bagby refinement: they
typically return rational approximants with more or less the same degree.

Experiment 2. We now visualize where the algorithms place the interpolation
nodes o; and the poles &; in and around the target sets X for a small subset of the
problems in Table 3. To avoid clutter, Figure 3 only displays the nodes and poles for
the weighted AAA and surrogate AAA with cyclic Leja—Bagby refinement. For the
latter, we distinguish the nodes chosen by the surrogate AAA phase from the nodes
chosen by the refinement phase. We leave out the poles that are too far from .
The discretization of Y7 consists of 300 points randomly generated inside %7 plus
another 50 points uniformly distributed on the contour 0¥7. The maximum number
of steps is set to 60 and the tolerance ¢ = 10710,
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TABLE 5
Accuracy ||F — RU™| g /|IF|ly for e = 10719 and 21 problems. Any relative error above € is
highlighted in red in the fourth and fifth columns (color is available online only) and considered as
a fail. A * indicates that the algorithm reached the mazimum number of steps, i.e., 60.

Problem Set-valued Weighted Surrogate Surrogate + NLEIGS  Surrogate +
AAA AAA AAA exact search AAA poles LB refine

bent_beam 3e-11 le-11 2¢-06 2e-07* le-12 2e-11
buckling_plate Te-11 2e-11 3e-07 3e-08% 4e-11 3e-11
canyon_particle 2e-12 2e-11 2e-06 6e-08%* Ge-12 8e-12
clamped_beam_1d le-11 le-11 1le-06 Te-10% 6e-13 4e-13
distributed_delayl le-12 6e-13 3e-06 8e-09% 2e-11 2e-12
fiber 3e-13 le-11 2e-06 2e-07* 9e-13 Te-13
gun 2e-13 3e-13 6e-07 3e-07% 2e-12 2e-12
hadeler 3e-11 5e-12 9e-10 le-11 le-11 2e-12
nepl le-11 le-11 le-11 le-11 3e-11 le-11
nep2 5e-12 4e-12 2e-05 3e-06%* le-11 le-11
nep3 5e-11 3e-12 2e-07 2e-09% Te-12 2e-12
neuron_dde 6e-11 3e-11 8e-09 5e-11 Te-12 le-11
pdde_symmetric 4e-11 5e-13 3e-07 2e-09% 2e-12 3e-12
photonic_crystal 8e-16 6e-16 9e-16 9e-16 8e-16 9e-16
pillbox_small 3e-13 8e-12 2e-07 6e-10% 6e-12 4e-12
sandwich_beam Te-16 6e-12 3e-09 3e-10 le-12 le-12
schrodinger_abc 2e-11 6e-12 1le-07 4e-09% 6e-12 5e-12
square_root le-11 2e-12 le-11 le-11 le-11 le-11
time_delay 3e-11 Te-12 Te-11 le-11 Te-12 9e-12
time_delay2 3e-11 2e-12 2e-09 3e-11 Te-12 9e-12
time_delay3 8e-12 3e-12 4e-10 2e-12 le-11 9e-12
# of fails 0 0 17 13 0 0

The results are as anticipated by the theory. For the holomorphic problems,
the nodes lie on the contour 9%, while the poles form a pattern outside . For
instance, they are aligned towards the branch points for the gun problem, which con-
tain two square roots. For the nepl problem, which is a scalar function camouflaged
as a matrix-valued one, both algorithms use the same interpolation nodes and poles.
Interestingly, one of the nodes lies inside Y7 despite the problem being holomorphic.
Finally, the poles and the nodes of buckling_plate do not follow the same pattern
because this problem is not holomorphic in the chosen region.

6. Conclusion. We have developed an error analysis for the eigenpairs of a
matrix-valued function F computed from a rational approximant R("™ =~ F on a
discretization of the target set ¥p. We showed in particular that if (A, v) with A € ¢
is a computed eigenpair of R(™ with backward error 7, then in order to guarantee
a backward error of n for the eigenpair (A,v) when considered as an approximate
eigenpair of F' we need the approximant R("™) to have a relative accuracy ¢ < 1.

We have shown that the weighted AAA algorithm, a variant of the set-valued
AAA algorithm, is a robust procedure to approximate matrix-valued functions that
are provided in split form: it is scaling independent and returns a rational approximant
with a user-chosen accuracy on the discretized target set 3, as long as ¥ contains
enough points and the chosen accuracy is not too low. This is achieved through the
use of a stopping criterion that includes weights relative to the importance of each
scalar function in split form.

For black box matrix-valued functions that are holomorphic on the target set, we
have developed a two-phase algorithm that we called the surrogate AAA algorithm
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TABLE 6
Degree of R(™) for e = 10719 and 21 problems. The lowest degrees are highlighted in bold/blue,
including any within one of the lowest and excluding those corresponding to failed required accuracy
that are provided within square brackets). A * indicates that the algorithm reached the mazimum
number of steps, i.e., 60.

Problem Set-valued Weighted Surrogate Surrogate4+  NLEIGS  Surrogate +
AAA AAA AAA exact search AAA poles LB refine
bent_beam 9 9 [ 6] [37]* 13 12
buckling_plate 26 27 [24] [32]* 50 47
canyon_particle 18 17 [11] [19]* 30 30
clamped_beam_1d 13 13 [12] [21]* 28 29
distributed_delayl 8 8 [7] [9]* 14 15
fiber 16 14 [10] [17* 30 30
gun 12 12 [8] [60]* 21 21
hadeler 7 8 [ 6] 17 15 21
nepl 24 24 24 24 24 24
nep2 16 16 [11] [16]* 21 21
nep3 10 10 [9] [11]* 17 19
neuron_dde 16 15 [14] 18 31 31
pdde_symmetric 9 10 [9] [11]* 18 18
photonic_crystal 7 6 6 6 6 6
pillbox_small 10 9 [7 [11]* 16 16
sandwich_beam 13 8 [8] [26] 19 19
schrodinger_abc 13 13 [12] [59]* 21 22
square_root 12 13 12 12 19 12
time_delay 15 15 14 15 31 31
time_delay?2 15 16 [14] 17 31 31
time_delay3 20 16 [14] 17 31 31
# of fails 0 0 17 13 0 0
# of lowest degree 18 21 4 5 2 3

with cyclic Leja—Bagby refinement. This algorithm, while more computationally ex-
pensive than the weighted AAA algorithm, only requires the ability to evaluate the
matrix-valued function at the point in the target set. It is scaling independent and
returns a rational approximant with a user-chosen accuracy on the discretized target
set 2, as long as X contains enough points. Our algorithm combines the strength of
surrogate AAA to identify good pole parameters in the first phase with the robustness
of the Leja—Bagby approach in the second phase.

We have conducted an extensive numerical comparison of algorithms for matrix-
valued functions on a large set of test problems from the NLEVP collection. We hope
this test suite will be useful for other developers of NEP eigensolvers.

Our numerical experiments were performed with the same tolerance for the two
phases of the two-phase algorithms. However, a stricter tolerance for phase 1 (i.e.,
surrogate AAA) could provide phase 2 with a better set of poles and a better ap-
proximant at the start of the Leja—Bagby refinement steps. Also, we limited our
experiments to uniformly distributed (random) sampling points for the discrete set
3 C ¥p. However, a uniform grid or a choice that reflects the properties of the specific
matrix-valued function could lead to lower degree rational approximants, but this is
outside the scope of this work. While stand-alone surrogate AAA did not perform well
in our experiments, there is ongoing work that suggests its behavior can be improved
by using insights from random matrix theory.
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TABLE 7
Degree of R("™) for e = 10713 and 21 problems. The lowest degrees are highlighted in bold/blue,
including any within one of the lowest and excluding those corresponding to failed required accuracy
that are provided within square brackets). A * indicates that the algorithm reached the mazimum
number of steps, i.e., 60.

Problem Set-valued Weighted Surrogate Surrogate4+  NLEIGS  Surrogate +
AAA AAA AAA exact search AAA poles LB refine

bent_beam 12 11 [7] [34]* 16 16
buckling_plate 30 30 [26] [29]* [60]* [60]*
canyon_particle 23 22 [15] [19]* 38 38
clamped_beam_1d 15 15 [14] [21]* 32 32
distributed_delayl 9 9 [ 8] [9]* 16 16
fiber 20 18 [14] [16]* 39 42
gun 15 16 [11] [60]* 27 60
hadeler 10 11 [ 9] [59]* 23 25
nepil 28 28 28 28 28 28
nep2 18 19 [12] [15]* 24 24
nep3 12 12 [10] [11]* 22 22
neuron_dde 19 18 [17] [60]* 33 32
pdde_symmetric 11 11 [11] [11]* 21 21
photonic_crystal 7 6 6 6 6 6
pillbox_small 13 12 [9] [11]* 22 22
sandwich_beam 17 12 [11] [60]* 22 22
schrodinger_abc 15 15 [13] [59]* 26 26
square_root 16 16 15 16 26 16
time_delay 17 18 [17] 20 22 22
time_delay?2 17 18 [17] [60]* 30 29
time_delay3 23 19 [17] [60]* 26 26
# of fails 0 0 18 17 1 1
# of lowest degree 18 21 3 3 2 3

Appendix A. Linearization of R("™ in (4.16). We show how to rewrite
R™(A\)v = 0 as a linear eigenproblem L(\)z = 0, when R("™ is expressed in the
mixed form (4.16). We rewrite R(™ in the form

d
RO (2) = w;F(2;)bi(2) + bag1(2)Ras1 + -+ + by (2) R,
=0

B

with bgyi(2), i = 1,...m —d, as in (4.6) and b;(z) = Z_lm/Z?ZO o, =1,...
Then, / /

1 d W d—1 d
ba(2) P ;Z_lai _ 1:[)(;;—0]-) ZwiH(chTj) .

i=0  j#i

The denominator of the right-hand side is, up to a scalar multiple, the same scalar
denominator as that of R(¥). Further, the numerator is the same as that of the Newton
basis function obtained after d iterations of Newton interpolation. Consequently,
bi(z) (the last barycentric basis function) is a scalar multiple of the basis function
we would have obtained had we used Newton’s interpolation from the start. We can
therefore write down the recursions for all by(2), ..., b, (2) throughout, with the first
d recursions corresponding to the barycentric basis functions, and then switching to
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buckling_plate
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& for wght AAA
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x104

schrodinger_abc

A2461

20 % . x
+ x
+ x
10 v
.
x
0 +
x
N
x
+
-10 L.
+ x
201"« oo
15 -10 5 0 5 10

Fic. 3. The set X, the interpolation nodes o;, and the poles &; nearest to 2 for a subset of the

problems in Table 3.

m — d steps of Newton:

bo(Z) = 1

Z— 0y

d

>

=0

(2 = 0ip1)bis1(2) = (2 — 03)bi(2),

Barit1(1 = z/8avit1)barviv1(2) = (2 — 0a1i)bari(2),

Wy

i=0,...

zZ— 0

,df]-a

i=0,...,m—d—1.

This recursion allows us to write the following linearization.

THEOREM A.1. Given the rational matriz-valued function R(™) in (4.16), the
rational eigenvalue problem R(m)()\)v =0 is equivalent to Ax = \Bz, where

_woF(Uo) wy F(oy) wyF(o,)
ool —o1
o411 —o,l
A= g4 T
Bd+1

Rd+1

Rm72 Rmfl - 05;1 Rm_
Om—2
Bm—1 I 1
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and

rwoF(og) wiF(oy) . waF(oy) Bapn | Bns Bu1 R,T
6771 5"'7) 6’"1 gm &nl 5m BVYL
I -1
I -1
B = I I ,
Ba+1 Eat1
I' I
L Bm—1 Em—1 .

while * = b(\) ® v with b(A) = [bo(A) b1(A) ..., bm_1(N)]T.
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