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Abstract. In this paper, we present preliminary results on a complete
eigensolver based on the Yau and Lu method. We first give an overview of
this invariant subspace decomposition method for dense symmetric ma-
trices followed by numerical results and work in progress of a distributed-
memory implementation. We expect that the algorithm’s heavy reliance
on matrix-matrix multiplication, coupled with FFT should yield a highly
parallelizable algorithm. We present performance results for the domi-
nant computation kernel on the Intel Paragon.

1 Introduction

As quantitative analysis becomes increasingly important in sciences and engi-
neering, the need for faster methods to solve bigger and more realistic problem
grows. Large order symmetric eigenvalues problems occur in a wide variety of
applications, mcluding the dynamic analysis of large-scale structures such as
aircraft and spacecraft, the prediction of structural responses in solid and soil
mechanics, the study of solar convection, the modal analysis of electronic circuits,
and the statistical analysis of data.

There are many algorithms for solving the symmetric eigenvalue problem
[13]. Much recent work has been devoted on parallel solvers, both on traditional
methods [8, 9, 10] and in the development of new methods [3, 7]. The traditional
method for computing the eigensystem of a real dense symmetric matrix A
consists in three steps [11]. First, A is reduced to tridiagonal form. Second, the
elgenvalues and eigenvectors of the tridiagonal matrix are computed. Third, the
elgenvectors are back transformed via the reduction transformation.

In this paper, we investigate the parallelization of a new eigensolver for real
dense symmetric matrices. Our algorithm is based on a recent method attributed
to Yau and Lu [16], which reduces the symmetric eigenvalue problem to a number
of matrix multiplications. Yau and Lu’s method involves approximating invariant
subspaces of a special matrix using an FFT. The computation of the special

* This work is partly supported by the Furopean project KIT 108 and Eureka Euro-
TOPS project.
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matrix and the vectors for the FFT is rich in matrix-matrix multiplications
Matrix multiplications can be implemented efficiently on most high-performance
machines, and is often available as an optimized implementation in a level 3
BLAS library {2, 4].

The rest of this paper will give an overview of the Yau and Lu’s method.
We will present the algorithm and valid it with numerical results. Then, we will
investigate the parallelization of this new eigensolver and present performance
results for the dominant computation kernel on the Intel Paragon.

2 Yau and Lu method

For. computing invariant subspaces of a symmetric n x n matrix A with eigen-
values A1, ..., A, and eigenvectors xi,...,%,, Yau and Lu use a polynomial
acceleration method.

Consider the unitary matrix B = ¢4 whose eigenvalues all lie on the unit circle.

Note that A and B have the same invariant subspaces.
N-1

Let Py(z) = Z B;z' be a polynomial of degree N — 1 that has a peak at
j=0

z=1and is clése to zero on the unit circle away from a vicinity of z = 1. Such

a polynomial exists and its coefficients §;,7 = 0, N — 1 can be obtained by a

recursive formula (see [16]).

Starting from an initial vector expanded in terms of the eigenvectors as vy =

Sor_ agz;, we can define the function v : [0, 27) — IR" by

T
u(A) = Py(e”"B)yg = ZajPN(ei(Af_’\))xj.

j=1
If A is chosen close to a particular Ax and the other eigenvalues of B are not
close to A then the coefficient of z; will be small except when j = k. Thus, u(})
can be viewed as an approximation of the eigenvector of B associated with the
eigenvalue e+
Setting v; = BYvy, the function u()\) can be written as

N-1 N-1
w(A) = Py(e" B)vg = Z B; Bluge™ A = Z B>,
j=0 J=0

where §;v; are the Fourier coefficients of u. Therefore, the FFT can be used
to compute u(A) at many different values of A simultaneously. Then, we need
to select vectors u(A) that can be taken as eigenvectors, group them into p
orthogonal clusters and add more vectors if necessary. These p clusters form an

orthogonal basis W = [Wy, ..., W,] whose elements span invariant subspaces of
A and hence, application of A to W decouples the spectrum :
Ay 0
WTAW =

0 A,
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So, the initial problem is reduced to a small symmetric matrix eigenvalue problem
in each cluster. Note that the subproblems Aq,..., 4, can be solved totally
independently. The algorithm is presented in next section.

3 Numerical algorithm

Consider a real symmetric matrix A. The following steps find the eigenvalues
and eigenvectors of A to the desired precision.

1~ Scaling and Translation: Compute upper and lower bounds of the spec-
trum of A and use these bounds to scale and translate the spectrum of A in
[0,27).

2- Polynomial computation: Let Ty_1 be the Chebyshev polynomial of de-
gree N — 1. The degree N 1s chosen such that

1
Tn-1 ((5 — cos —n—)/(l + cos _)>

<K

— bl

where k is a measure of the desired accuracy of the computed invariant subspace.
Compute the coefficients ﬁéN_l), . ,[3](\,]\’__11) of the polynomial Py by the recur-
sive formulas :

4O = (1):b)ﬁ§1):a
o = a4 o)~ g
G = 0 (269 + ) + 268 - Y
G = a (B + 85, ) + 265 — 7 for > 1
ﬁ§k+l) =0forj>k+1.

where

- 2 _ 1—cos(m/n)
" 1+4cos(n/n)’ ~ 1+cos(n/n)’

3~ Unitary matrix: Compute matrices cos (7X) and X! sin(7X) where X =

A
— - I using the following Chebyshev expansion :

cos(rz) ~ cg + e1Ta(z) + caTu(z) + -+ e5Tio(2)
+Tho (c6Ty(z) + c7T4{z) + - + c10Th0(2))

sm('ﬂl’) ~ 50+ 51Ty (z) + s9Tu(2) + - - + s5T10()

+T0 (seTo(x) + s7T4(z) + - -+ s10Th0(x)),

where ¢q,...,c10,50,..., 510 are Chebyshev coefficients.
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4- Computation of vectors v; = e94yy, 7 = 0,2N —1 The real and imaginary
part of vy are obtained with the approximation of cos (X) and X! sin{rX) :

vy = cos (7X)vo + X ! sin(w X)) (Xvp).

The remaining vectors can be computed following these M = (log, N — 1) steps:
step 1 : Cy = cos(A)
vg = 2C1v1 — v

step 2 : Co=2C% -1
(vs,v4) = 2Cs(v1, v2) — (v1, v0)

step 3 - Cy =202 ~1 :
(US> Vg, U7, /US) = 2C'VB(U] , Vg, V3, U4) e (US, V2, U1, UO)

step M : Cp = 2(]5_1 -7
(U%+1,...,’UN) = 2C,(v1, .. .,’v%) - (”%—1: o, V).
5 Evaluation of u()\): Via the FFT, compute the vectors

N-1 ,
up = uN)yoge = Re Y fruje™ %, fork=0,...,2N —1,
j=0

6— Selection and refinement: Select the most useful vectors from the 2N
vectors o, ..., vaN—1. Group them into a number of orthogonal clusters, add
more vectors if necessary and reduce the initial problem to a small symmetric
matrix eigenvalue problem in each cluster.

The most time consuming part of the algorithin is the computation of the 2N
vectors v;. We need log, N — 1 multiplications of real symmetric matrices and
log, N — 1 more multiplications between a symmetric matrix and a rectangular
one. This part needs (logy(N) — 1)n® + 4Nn? floating point operations. The
computation of ¢4 to the desired accuracy requires 6 multiplications of real
symmetric matrices for C cos 7X and one more for S = X~ !sin7X, that is, 7Tn®
operations. The step of computing the uy is still efficient because of the FFT
algorithm and can be done in nN log,(N) operations. When necessary, the work
for the supplementary vectors involves —g—n?’ more operations since we need to
construct an orthogonal matrix by a QR factorization. The reduction W7 AW
involves two matrix multiplications or 3n® operations. Usually, the subproblems
in each cluster only involve small matrices and the cost is negligible compared
to the total work. So, the total number of operations is given by

i7 . .
(% +logy(N))n® + 4Nn* 4+ O(n®).

Since N is typically a small multiple of n, we see from this operation count that
the sequential complexity of the Yau and Lu algorithm is considerably greater
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than the QR algorithm. However, note that steps 3,4 and 6 of the algorithm are
all based on matrix-matrix multiplications and if we suppose that N ~ 8n then

Total operations involving matrix multiplications S 35 + 3logs(n)
Total operations = 38+ 3log,(n)’

So, for matrices of dimension between 500 and 1000, we find that matrix mul-
tiplications account for more than 90% of the total operation count. For larger
dimensions of the matrix A, this percentage will of course increase. The efficiency
of level 3 BLAS routines can justify the use of the extra multiplications. The
Reuse-Ratio defined by the rapport between the number of flops and the size of
mermory reference bounds the performances. Its value is 2/3 for level 1 BLAS,
2 for level 2 BLAS and n/2 for level 3 BLAS. So, high level BLAS 3 improve
performances.

4 Numerical results

All the test results presented in this section where performed on a SUNsparc
512, MP. The arithmetic was IEEE standard double precision with a rmachine
precision of ¢ = 27°% ~ 2.22044 x 107'¢ and over /underflow threshold 10#397

We have tested our algorithm on a large set of test matrices using the LAPACK
[1] test generation routine DLATMS. This routine constructs symmetric matrices
of the form

A=UTDU

where U is a random orthogonal matrix and D = diag(Aq,...,A,) a diagonal
matrix. We can define the elements of D and then simulate more or less critical
situations that is, well separated spectrum, clusters of eigenvalues, ... .
We quantified accuracy in the computed eigenvalues by computing the rela-
tive error i
max ,)\Z—_/\Z—I
1<ign i)\ma:vi
where ); denotes an exact eigenvalue and A; the corresponding comnputed eigen-
value (see Fig.1).
Accuracy in the residuals for a given matrix A is quantified by computing
the maximum normalized 2-norm residual

| A%; — Ai]a
Max ——— e

i Al

where z; is the computed eigenvector corresponding to the computed eigenvalue
Ai (see Fig.2).
We have computed (see Fig. 3) the departure from orthogonality given by

rr;f;x |(QTQ - In)i.7'|

with 2|l = 1
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where () is the matrix of eigenvectors.

The accuracy of invariant subspaces is controlled in step 2 of the algorithm.
As we have chosen N such that k < 107° we expect at most nine corrects
significant digits for the eigenvectors. If we choose N such that k < 1071, we
increase the computational cost but obtain better accuracy (see Fig. 4 and Fig.
5).

5 Parallel implementation

There are two forms of parallelism in the Yau and Lu method. The first one
corresponds to data parallelism with the heavy reliance on matrix-matrix multi-
plications. The second one is a kind of functional parallelism with the reduction
of the initial problem to a number of small symmetric eigenvalue problems that
can be solved totally independently on each processor. That is why we say that
Yau and Lu method yields to a highly parallelizable algorithm.
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Fig. 6. Block cyclic distribution on a 2x2 processor grid.

For an estimation of the upper and lower bound of the spectrum of A we use
a method developed by Rojo and Soto [15]. This method is based on matrix
multiplications but does not increase the total number of operations since the
computed matrix-matrix product is reused for the construction of C' and S.
We prefer to focus our parallelization on the most cost effective part of the
algorithm, that is the construction of the matrices C, S and the Fourier’s coeffi-
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cients. In order to ensure a good load balancing, performance and scalability of
our code, we use a 2-dimensional block cyclic distribution on a P x ) processor
grid (see Fig.6). This kind of distribution encompasses a large nurber (but not
all) data distribution schemes.

/*CODS(}Y\.ICtiOl’l of T] s T27 T4, Tg, TIO . */
T« 2AxA—1 /* Parallel level 3 BLAS */
FOR i=4 TO 10 STEP 2

Ti— 2T oxTy —Ti_y /* Parallel level 3 BLAS */
ENDFOR
/*Chebyshev expansion of C and 3 */
C + Co[
S So[
FOR i=1 TO 5

C e cTo; 4+ C

S 38T + S

CC « C,‘+5T2i +CC

S5 31‘+5T2,‘ + 55
ENDFOR
C:==-TiwxCC+C /* Parallel level 3 BLAS */
S:=—TigxSS+ S /* Parallel level 3 BLAS */

Table 1. Algorithm for computing C and S.

In Tab.1, we present the parallel algorithm for the computation of the ma-
trices C = cos7X and S = X !sinwX which defined the unitary matrix e‘4.
It is only based on 7 calls of parallel level 3 BLAS.

The computation of Fourier’s vectors is the most cost effective part in com-
putation and communication times. At each step k,k = 1,...,log,(N/2), the
following matrix-matrix multiplication is performed:

Cr = 2Ck_1 * Cg_1,
Vk = QCk * Uk — I/Vk,

where

Co —cosmX, Wy = vy and Uy = vy

Wi = [perm(Vi—1), Wi-1], Ur = [Uk=1, Vi1l

The three matrices Vi, Uy, Wy are rectangular ones and their sizes increase from
iteration to iteration. The rectangular matrix Wy depends on a permutation
of Vi’s columns and communications between processor columns are necessary
for its construction. For a good load balancing of the computation, we impose
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the matrices Vi, Uk, Wi to have a column block size partitioning equal to 2. The
distribution we use for the computed Fourier’s coeflicients v; avold the necessary
communications for the bit-reversal that is the first step of the FFT.We present
the parallel algorithm in Tab.2.

For the parallel 1-D FFT [6], we use a communication computation overlap
algorithm.

/* Initialization */
W wo
U « Cug + 1S /* Parallel level 2 BLAS */
V20U -W /* Parallel level 3 BLAS */
/* Main loop */
FOR i = 1 TO log,(N/2) DO
C«20+C—1 /* Parallel level 3 BLAS */
W « [perm(V), W] /* update of W, send/recv between processor col.*/
U« [U,V] /* update of W
V20U - W /* Parallel level 3 BLAS */
ENDFOR

Table 2. Algorithm for computing v, for yj=0,...,N — 1.

For the last part of the algorithm, each processor selects the most useful com-
puted vectors uy and forms a basis. When the number of selected vectors is less
than n, we use a parallel QR factorization in order to complete the basis. after
projection onto this basis, each processor solves its own small symmetric eigen-
value problem using a standard symmetric eigensolver (for example, DSYEV
from LAPACK [1]).

5.2 Symmetric matrix-matrix product

In Section 3, we have shown that the computational cost of the algorithm is
dominated by dense matrix-matrix multiplications. Thus, the performance of this
algorithm will depend heavily on the matrix multiplication code. We need two
different types of matrix-matrix products. The first one is the product between
symimetric and rectangular matrices and the second one is product between two
symmetric matrices which commute. So the result will be a symmetric matrix.
We want to develop a double precision distributed matrix code for the symmetric
matrix product that take into account the special properties of these matrices
(which is not currently available in ScaLAPACK [5]).

The algorithm below is based on an idea presented by Snyder in [12]. It uses a
block scattered distribution of the matrices. The whole matrices are distributed
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and not only the upper or lower triangular part. The symbols are the followings.
M is the matrix size, distributed on a P x (} grid of processors. There are N, x Ny,
blocks, and each processor has P, x P blocks.

Ny =[5
Py =[5

/* Computation of the diagonal blocks of C */
FOR : =0 TO N, DO
cur_row = mod(t, P)
cur _col = mod(1, Q)
b= ]
b= [5]
IF ( my_col = cur_col ) THEN
computes the diagonal blocks of C :
DSCMM = aATbc X B.,ﬁc +/60br,§c — Cbr,bc
global sum of Cy_ 4, :
DGSUM2D = the result is left on proc. (cur.row, cur_col)
ENDIF
ENDFOR
/* Computation of the blocks of the upper triangular part of C */
FOR :=0TO Ny —1 DO
cur_row = mod(i, P)
cur-col = mod(%, Q)
b = [ 5]
bc = [%‘]
IF ( my—col = cur_col ) THEN
DGEBS2D = broadcasts A s, to all processors of the cur_row row
computes the 1" block row of the upper triang. part of C :
DGEMM = o ATy % B (v.41,..,5,) + BCh, (bot1,.,Py) = Cbp (bot1,Py)
global sum of Cy, (4.41,..5,) *
DGSUM?2D = the result is left on proc. (cur_row, my-—col)
ELSE
DGBR2D = receives A s,
computes the i block row of the upper triang. part of C :
DGEMM = oAT, x B .,...p,) + BCo, (b, Py) = Cor(be,....By)
global sum of Cy_ (v, ., p,) ¢
DGSUM2D = the result is left on proc. (cur-row, my_col)
ENDIF
ENDFOR
/* transpose and copy the upper triangular part of C in the lower part.*/

Table 3. Symmetric matrix multiplication algorithm.

In the first phase, the diagonal blocks of the matrix C' are computed. Only
the upper triangular part of each block is computed. For this, a FORTRAN
subroutine (SCMM) has been developed since no level 3 BLAS subroutine exists
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to achieve such a computation. On the Intel Paragon, this compiled subroutine
is as efficient as the optimized level 3 BLAS subroutine.

Since the matrices are symmetric, each diagonal block is the product of two
block columns that are distributed on the same column of processors. But after
the multiplication, each processor has a part of the result. Then, a global sum
on this column of processor gives the total result. For example, on a 2 x 3 grid,
the C71 block is the product of column A by the column B.1 and these two
columns are distributed on processors 1 and 4. The result of the global sum is
left on processor 4 which owns the (7 block.

The second phase is hardly different from the first. It computes the remaining
blocks of the upper triangular part of C'. Therefore, the A and B block columns
to multiply are not always on the same processors. For example, on a 2 x 3 grid,
C13 1s the product of A1 which is distributed on processors 1 and 4, and Bg
which is on 0 and 3. Consequently, the A; block column has to be broadcast
and multiplied by B_(; .. n,) to compute C; (; . n,). As in the first part, each
processor has a partial result after the multiplication and a global sum is needed.

The last step consits to transpose the strictly upper triangular part of C' in
order to obtain the full matrix.

The Fig. 7 shows a comparison between the PDGEMM routine that computes
a full matrix multiplication and our routine. In solid line, this is the time in
seconds taken by PDGEMM for different matrix sizes. In dashed line, this is the
same for our routine. In dotted line, this is the division of the two times. We can
see that our code is very efficient for large sizes. The ratio between a cornplete
and a symmetric product can even reach 2. With smaller matrix sizes, the gain
decreases. A preliminary theoretical analysis shows that a ratio of 2 is not pos-
sible for small matrix sizes. This is due to the block scattered distribution. Each
processor has not exactly the half of the computation to achieve a symmetric
product. But this ratio is above 1.5 most of the time whatever the matrix size.

5.3 Implementation on the Intel Paragon

All the tests have been done on an Intel Paragon with 30 nodes. Each node is
composed of two 1860, one for the computations and one for the communications.
The nodes are connected by a bidirectional 2d-torus that allows a sustained
bandwidth of 69 Mbytes and a latency of 60us.

Preliminary results on the Paragon have been obtained (see Fig. 8 and Fig. 9).
Measures concern the main computational kernel of the code with the matrix-
matrix product pdgemm of ScaLAPACK.

Because of the large amount of memory needed for the algorithm, the max-
imum problem size is 256 on one processor and 512 on 4. Even if we have not
yet Incorporated our symmetric matrix-matrix product in the code, we obtain
an efficiency close to 1 and speed-up close to 4 for middle problem size (256) on
4 processors. For smaller problem sizes (50-100), the speed-up stays above 2.

Fig. 10 shows a comparison of the execution times between the ScaLAPACK
routine PDSYEVX and the main computational kernel of our code. The routine
PDSYEVX [8] is based on a bisection method followed by inverse iterations. We
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conclude that our code may be competitive with the bisection method for the
computation of all the eigenvalues and all the eigenvectors.
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trix on Paragon. the matrix on Paragon.

6 Conclusion

We studied a new approach to compute the eigenvalues and eigenvectors of a real
symmetric matrix. The algorithm parallelized in this paper is not efficient on a
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Fig. 10. Execution times for PDSYEVX and Yau & Lu on a Paragon.

sequential machine but can fully take advantage of parallel machines because of
less data dependences and the use of matrix products as the most important corn-
puted kernel. We obtain good performances for our code concerning efliciency
and execution time. Theoritical study [14] showed that our code should scale
nicely on parallel machines with a very large number of processors. Of course,
the experiments carried out with a grid of 2 x 2 processors are not conclusive in
this respect. That why we want to test our code on large size problems. Future
target machine are the SP2 and the T3D.
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